from pytorch_grad_cam import GradCAMPlusPlus from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image import cv2 import numpy as np import torch import torch.nn as nn # Replace with your model from configs import * # Load your model (change this according to your model definition) model2 = EfficientNetB2WithDropout(num_classes=NUM_CLASSES).to(DEVICE) model2.load_state_dict(torch.load("output/checkpoints/EfficientNetB2WithDropout.pth")) model1 = SqueezeNet1_0WithSE(num_classes=NUM_CLASSES).to(DEVICE) model1.load_state_dict(torch.load("output/checkpoints/SqueezeNet1_0WithSE.pth")) model3 = MobileNetV2WithDropout(num_classes=NUM_CLASSES).to(DEVICE) model3.load_state_dict(torch.load("output\checkpoints\MobileNetV2WithDropout.pth")) model1.eval() model2.eval() model3.eval() # Find the target layer (modify this based on your model architecture) # EfficientNetB2WithDropout - model.features[-1] # SqueezeNet1_0WithSE - model.features # MobileNetV2WithDropout - model.features[-1] target_layer_efficientnet = None for child in model2.features[-1]: if isinstance(child, nn.Conv2d): target_layer_efficientnet = child if target_layer_efficientnet is None: raise ValueError( "Invalid EfficientNet layer name: {}".format(target_layer_efficientnet) ) target_layer_squeezenet = None for child in model1.features: if isinstance(child, nn.Conv2d): target_layer_squeezenet = child if target_layer_squeezenet is None: raise ValueError( "Invalid SqueezeNet layer name: {}".format(target_layer_squeezenet) ) target_layer_mobilenet = None for child in model3.features[-1]: if isinstance(child, nn.Conv2d): target_layer_mobilenet = child if target_layer_mobilenet is None: raise ValueError("Invalid MobileNet layer name: {}".format(target_layer_mobilenet)) # Load and preprocess the image image_path = r"data\test\Task 1\Cerebral Palsy\89.png" rgb_img = cv2.imread(image_path, 1) rgb_img = np.float32(rgb_img) / 255 input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) input_tensor = input_tensor.to(DEVICE) input_tensor.requires_grad = True # Enable gradients for the input tensor # Create a GradCAMPlusPlus object efficientnet_cam = GradCAMPlusPlus(model=model2, target_layers=[target_layer_efficientnet], use_cuda=True) squeezenet_cam = GradCAMPlusPlus(model=model1, target_layers=[target_layer_squeezenet], use_cuda=True) mobilenet_cam = GradCAMPlusPlus(model=model3, target_layers=[target_layer_mobilenet], use_cuda=True) efficientnet_grayscale_cam = efficientnet_cam(input_tensor=input_tensor)[0] squeezenet_grayscale_cam = squeezenet_cam(input_tensor=input_tensor)[0] mobilenet_grayscale_cam = mobilenet_cam(input_tensor=input_tensor)[0] # Apply a colormap to the grayscale heatmap efficientnet_heatmap_colored = cv2.applyColorMap(np.uint8(255 * efficientnet_grayscale_cam), cv2.COLORMAP_JET) squeezenet_heatmap_colored = cv2.applyColorMap(np.uint8(255 * squeezenet_grayscale_cam), cv2.COLORMAP_JET) mobilenet_heatmap_colored = cv2.applyColorMap(np.uint8(255 * mobilenet_grayscale_cam), cv2.COLORMAP_JET) # normalized_efficientnet_heatmap = efficientnet_heatmap_colored / np.max(efficientnet_heatmap_colored) # normalized_squeezenet_heatmap = squeezenet_heatmap_colored / np.max(squeezenet_heatmap_colored) # normalized_mobilenet_heatmap = mobilenet_heatmap_colored / np.max(mobilenet_heatmap_colored) # # Ensure heatmap_colored has the same dtype as rgb_img # normalized_efficientnet_heatmap = normalized_efficientnet_heatmap.astype(np.float32) / 255 # normalized_squeezenet_heatmap = normalized_squeezenet_heatmap.astype(np.float32) / 255 # normalized_mobilenet_heatmap = normalized_mobilenet_heatmap.astype(np.float32) / 255 efficientnet_heatmap_colored = efficientnet_heatmap_colored.astype(np.float32) / 255 squeezenet_heatmap_colored = squeezenet_heatmap_colored.astype(np.float32) / 255 mobilenet_heatmap_colored = mobilenet_heatmap_colored.astype(np.float32) / 255 # Adjust the alpha value to control transparency alpha = ( 0.1 # You can change this value to make the original image more or less transparent ) # [0.38, 0.34, 0.28] weighted_heatmap = ( efficientnet_heatmap_colored * 0.38 + squeezenet_heatmap_colored * 0.34 + mobilenet_heatmap_colored * 0.28 ) # Overlay the colored heatmap on the original image final_output = cv2.addWeighted(rgb_img, 0.3, weighted_heatmap, 0.7, 0) # Save the final output cv2.imwrite("cam.jpg", (final_output * 255).astype(np.uint8))