SpiralSense / train.py
cycool29's picture
Update
97dcf92
raw
history blame
9.17 kB
import os
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
from matplotlib import rcParams
from models import *
from torch.utils.tensorboard import SummaryWriter
from configs import *
import data_loader
import torch.nn.functional as F
import csv
import numpy as np
from torchcontrib.optim import SWA
rcParams["font.family"] = "Times New Roman"
SWA_START = 5 # Starting epoch for SWA
SWA_FREQ = 5 # Frequency of updating SWA weights
def rand_bbox(size, lam):
W = size[2]
H = size[3]
cut_rat = np.sqrt(1.0 - lam)
cut_w = np.int_(W * cut_rat)
cut_h = np.int_(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
def cutmix_data(input, target, alpha=1.0):
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = input.size()[0]
index = torch.randperm(batch_size)
rand_index = torch.randperm(input.size()[0])
bbx1, bby1, bbx2, bby2 = rand_bbox(input.size(), lam)
input[:, :, bbx1:bbx2, bby1:bby2] = input[rand_index, :, bbx1:bbx2, bby1:bby2]
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (input.size()[-1] * input.size()[-2]))
targets_a = target
targets_b = target[rand_index]
return input, targets_a, targets_b, lam
def cutmix_criterion(criterion, outputs, targets_a, targets_b, lam):
return lam * criterion(outputs, targets_a) + (1 - lam) * criterion(
outputs, targets_b
)
def setup_tensorboard():
return SummaryWriter(log_dir="output/tensorboard/training")
def load_and_preprocess_data():
return data_loader.load_data(
COMBINED_DATA_DIR + "1",
preprocess,
)
def initialize_model_optimizer_scheduler():
model = MODEL.to(DEVICE)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=NUM_EPOCHS)
return model, criterion, optimizer, scheduler
def plot_and_log_metrics(metrics_dict, step, writer, prefix="Train"):
for metric_name, metric_value in metrics_dict.items():
writer.add_scalar(f"{prefix}/{metric_name}", metric_value, step)
def train_one_epoch(model, criterion, optimizer, train_loader, epoch, alpha):
model.train()
running_loss = 0.0
total_train = 0
correct_train = 0
for i, (inputs, labels) in enumerate(train_loader, 0):
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
optimizer.zero_grad()
# Apply CutMix
inputs, targets_a, targets_b, lam = cutmix_data(inputs, labels, alpha=1)
outputs = model(inputs)
# Calculate CutMix loss
loss = cutmix_criterion(criterion, outputs, targets_a, targets_b, lam)
loss.backward()
optimizer.step()
running_loss += loss.item()
if (i + 1) % NUM_PRINT == 0:
print(
f"[Epoch {epoch + 1}, Batch {i + 1}/{len(train_loader)}] "
f"Loss: {running_loss / NUM_PRINT:.6f}"
)
running_loss = 0.0
_, predicted = torch.max(outputs, 1)
total_train += labels.size(0)
correct_train += (predicted == labels).sum().item()
avg_train_loss = running_loss / len(train_loader)
return avg_train_loss, correct_train / total_train
def validate_model(model, criterion, valid_loader):
model.eval()
val_loss = 0.0
correct_val = 0
total_val = 0
with torch.no_grad():
for inputs, labels in valid_loader:
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs, 1)
total_val += labels.size(0)
correct_val += (predicted == labels).sum().item()
avg_val_loss = val_loss / len(valid_loader)
return avg_val_loss, correct_val / total_val
def main_training_loop():
writer = setup_tensorboard()
train_loader, valid_loader = load_and_preprocess_data()
model, criterion, optimizer, scheduler = initialize_model_optimizer_scheduler()
best_val_loss = float("inf")
best_val_accuracy = 0.0
no_improvement_count = 0
epoch_metrics = []
AVG_TRAIN_LOSS_HIST = []
AVG_VAL_LOSS_HIST = []
TRAIN_ACC_HIST = []
VAL_ACC_HIST = []
# Initialize SWA optimizer
swa_optimizer = SWA(optimizer, swa_start=SWA_START, swa_freq=SWA_FREQ)
for epoch in range(NUM_EPOCHS):
print(f"\n[Epoch: {epoch + 1}/{NUM_EPOCHS}]")
print("Learning rate:", scheduler.get_last_lr()[0])
avg_train_loss, train_accuracy = train_one_epoch(
model, criterion, optimizer, train_loader, epoch, CUTMIX_ALPHA
)
AVG_TRAIN_LOSS_HIST.append(avg_train_loss)
TRAIN_ACC_HIST.append(train_accuracy)
# Log training metrics
train_metrics = {
"Loss": avg_train_loss,
"Accuracy": train_accuracy,
}
plot_and_log_metrics(train_metrics, epoch, writer=writer, prefix="Train")
epoch_metrics.append(
{
"Epoch": epoch + 1,
"Train Loss": avg_train_loss,
"Train Accuracy": train_accuracy,
"Validation Loss": avg_val_loss,
"Validation Accuracy": val_accuracy,
"Learning Rate": scheduler.get_last_lr()[0],
}
)
# Learning rate scheduling
if epoch < WARMUP_EPOCHS:
# Linear warm-up phase
lr = LEARNING_RATE * (epoch + 1) / WARMUP_EPOCHS
for param_group in optimizer.param_groups:
param_group["lr"] = lr
else:
# Cosine annealing scheduler after warm-up
scheduler.step()
avg_val_loss, val_accuracy = validate_model(model, criterion, valid_loader)
AVG_VAL_LOSS_HIST.append(avg_val_loss)
VAL_ACC_HIST.append(val_accuracy)
# Log validation metrics
val_metrics = {
"Loss": avg_val_loss,
"Accuracy": val_accuracy,
}
plot_and_log_metrics(val_metrics, epoch, writer=writer, prefix="Validation")
# Print average training and validation metrics
print(f"Average Training Loss: {avg_train_loss:.6f}")
print(f"Average Validation Loss: {avg_val_loss:.6f}")
print(f"Training Accuracy: {train_accuracy:.6f}")
print(f"Validation Accuracy: {val_accuracy:.6f}")
# Check for early stopping based on validation accuracy
if val_accuracy > best_val_accuracy:
best_val_accuracy = val_accuracy
no_improvement_count = 0
else:
no_improvement_count += 1
# Early stopping condition
if no_improvement_count >= EARLY_STOPPING_PATIENCE:
print(
"Early stopping: Validation accuracy did not improve for {} consecutive epochs.".format(
EARLY_STOPPING_PATIENCE
)
)
break
# Update SWA weights
if epoch >= SWA_START and epoch % SWA_FREQ == 0:
swa_optimizer.update_swa()
# Apply SWA to the final model weights
swa_optimizer.swap_swa_sgd()
csv_filename = "training_metrics.csv"
with open(csv_filename, mode="w", newline="") as csv_file:
fieldnames = [
"Epoch",
"Train Loss",
"Train Accuracy",
"Validation Loss",
"Validation Accuracy",
"Learning Rate",
]
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
writer.writeheader()
for metric in epoch_metrics:
writer.writerow(metric)
print(f"Metrics saved to {csv_filename}")
# Ensure the parent directory exists
os.makedirs(os.path.dirname(MODEL_SAVE_PATH), exist_ok=True)
torch.save(model.state_dict(), MODEL_SAVE_PATH)
print("\nModel saved at", MODEL_SAVE_PATH)
# Plot loss and accuracy curves
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(
range(1, len(AVG_TRAIN_LOSS_HIST) + 1),
AVG_TRAIN_LOSS_HIST,
label="Average Train Loss",
)
plt.plot(
range(1, len(AVG_VAL_LOSS_HIST) + 1),
AVG_VAL_LOSS_HIST,
label="Average Validation Loss",
)
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.title("Loss Curves")
plt.subplot(1, 2, 2)
plt.plot(range(1, len(TRAIN_ACC_HIST) + 1), TRAIN_ACC_HIST, label="Train Accuracy")
plt.plot(range(1, len(VAL_ACC_HIST) + 1), VAL_ACC_HIST, label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend()
plt.title("Accuracy Curves")
plt.tight_layout()
plt.savefig("training_curves.png")
# Close TensorBoard writer
writer.close()
if __name__ == "__main__":
main_training_loop()