SpiralSense / optuna_unused.py
cycool29's picture
Update
73666ad
raw
history blame
5.97 kB
import os
import optuna
from optuna.trial import TrialState
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
from configs import *
import data_loader
from torch.utils.tensorboard import SummaryWriter
import time
import numpy as np
torch.cuda.empty_cache()
print(f"Using device: {DEVICE}")
EPOCHS = 10
# N_TRIALS = 10
# TIMEOUT = 5000
EARLY_STOPPING_PATIENCE = (
4 # Number of epochs with no improvement to trigger early stopping
)
# Create a TensorBoard writer
writer = SummaryWriter(log_dir="output/tensorboard/tuning")
# Function to create or modify data loaders with the specified batch size
def create_data_loaders(batch_size):
train_loader, valid_loader = data_loader.load_data(
COMBINED_DATA_DIR + "1",
preprocess,
batch_size=batch_size,
)
return train_loader, valid_loader
def rand_bbox(size, lam):
W = size[2]
H = size[3]
cut_rat = np.sqrt(1.0 - lam)
cut_w = np.int_(W * cut_rat)
cut_h = np.int_(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
def cutmix_data(input, target, alpha=1.0):
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = input.size()[0]
index = torch.randperm(batch_size)
rand_index = torch.randperm(input.size()[0])
bbx1, bby1, bbx2, bby2 = rand_bbox(input.size(), lam)
input[:, :, bbx1:bbx2, bby1:bby2] = input[rand_index, :, bbx1:bbx2, bby1:bby2]
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (input.size()[-1] * input.size()[-2]))
targets_a = target
targets_b = target[rand_index]
return input, targets_a, targets_b, lam
def cutmix_criterion(criterion, outputs, targets_a, targets_b, lam):
return lam * criterion(outputs, targets_a) + (1 - lam) * criterion(
outputs, targets_b
)
# Objective function for optimization
def objective(trial, model=MODEL):
model = model.to(DEVICE)
batch_size = trial.suggest_categorical("batch_size", [16, 32])
train_loader, valid_loader = create_data_loaders(batch_size)
lr = trial.suggest_float("lr", 1e-5, 1e-3, log=True)
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
gamma = trial.suggest_float("gamma", 0.1, 0.9, step=0.1)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=EPOCHS)
past_trials = 0 # Number of trials already completed
# Print best hyperparameters:
if past_trials > 0:
print("\nBest Hyperparameters:")
print(f"{study.best_trial.params}")
print(f"\n[INFO] Trial: {trial.number}")
print(f"Batch Size: {batch_size}")
print(f"Learning Rate: {lr}")
print(f"Gamma: {gamma}\n")
early_stopping_counter = 0
best_accuracy = 0.0
for epoch in range(EPOCHS):
model.train()
for batch_idx, (data, target) in enumerate(train_loader, 0):
data, target = data.to(DEVICE), target.to(DEVICE)
optimizer.zero_grad()
if model.__class__.__name__ == "GoogLeNet":
output = model(data).logits
else:
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
scheduler.step()
model.eval()
correct = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(valid_loader, 0):
data, target = data.to(DEVICE), target.to(DEVICE)
data, targets_a, targets_b, lam = cutmix_data(data, target, alpha=1)
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
accuracy = correct / len(valid_loader.dataset)
if accuracy >= 1.0:
print(f"Desired accuracy of 1.0 achieved. Stopping early.")
return float("inf")
# Log hyperparameters and accuracy to TensorBoard
writer.add_scalar("Accuracy", accuracy, trial.number)
writer.add_hparams(
{"batch_size": batch_size, "lr": lr, "gamma": gamma},
{"accuracy": accuracy},
)
print(f"[EPOCH {epoch + 1}] Accuracy: {accuracy:.4f}")
trial.report(accuracy, epoch)
if accuracy > best_accuracy:
best_accuracy = accuracy
early_stopping_counter = 0
else:
early_stopping_counter += 1
# Early stopping check
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
print(f"\nEarly stopping at epoch {epoch + 1}")
break
if trial.number > 10 and trial.params["lr"] < 1e-3 and best_accuracy < 0.7:
return float("inf")
past_trials += 1
return best_accuracy
if __name__ == "__main__":
hyperband_pruner = optuna.pruners.HyperbandPruner()
# Record the start time
start_time = time.time()
# storage = optuna.storages.InMemoryStorage()
study = optuna.create_study(
direction="maximize",
pruner=hyperband_pruner,
study_name="hyperparameter_tuning",
storage="sqlite:///" + MODEL.__class__.__name__ + ".sqlite3",
)
study.optimize(objective)
# Record the end time
end_time = time.time()
# Calculate the duration of hyperparameter tuning
tuning_duration = end_time - start_time
print(f"Hyperparameter tuning took {tuning_duration:.2f} seconds.")
best_trial = study.best_trial
print("\nBest Trial:")
print(f" Trial Number: {best_trial.number}")
print(f" Best Accuracy: {best_trial.value:.4f}")
print(" Hyperparameters:")
for key, value in best_trial.params.items():
print(f" {key}: {value}")