SpiralSense / configs.py
cycool29's picture
Update
97dcf92
raw
history blame
10.6 kB
import os
import torch
from torchvision import transforms
from torch.utils.data import Dataset
from models import *
import torch.nn as nn
from torchvision.models import (
squeezenet1_0,
SqueezeNet1_0_Weights,
squeezenet1_1,
SqueezeNet1_1_Weights,
shufflenet_v2_x2_0,
ShuffleNet_V2_X2_0_Weights,
mobilenet_v3_small,
MobileNet_V3_Small_Weights,
efficientnet_v2_s,
EfficientNet_V2_S_Weights,
efficientnet_b0,
EfficientNet_B0_Weights,
efficientnet_b1,
EfficientNet_B1_Weights,
efficientnet_b2,
EfficientNet_B2_Weights,
efficientnet_b3,
EfficientNet_B3_Weights,
mobilenet_v3_small,
MobileNet_V3_Small_Weights,
mobilenet_v3_large,
MobileNet_V3_Large_Weights,
googlenet,
GoogLeNet_Weights,
MobileNet_V2_Weights,
mobilenet_v2,
)
import torch.nn.functional as F
# Constants
RANDOM_SEED = 123
BATCH_SIZE = 8
NUM_EPOCHS = 150
WARMUP_EPOCHS = 5
LEARNING_RATE = 0.0001
STEP_SIZE = 10
GAMMA = 0.3
CUTMIX_ALPHA = 0.3
# DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
DEVICE = torch.device("cpu")
NUM_PRINT = 100
TASK = 1
WARMUP_EPOCHS = 5
RAW_DATA_DIR = r"data/train/raw/Task "
AUG_DATA_DIR = r"data/train/augmented/Task "
EXTERNAL_DATA_DIR = r"data/train/external/Task "
COMBINED_DATA_DIR = r"data/train/combined/Task "
TEST_DATA_DIR = r"data/test/Task "
TEMP_DATA_DIR = "data/temp/Task "
NUM_CLASSES = 7
LABEL_SMOOTHING_EPSILON = 0.1
EARLY_STOPPING_PATIENCE = 20
CLASSES = [
"Alzheimer Disease",
"Cerebral Palsy",
"Dystonia",
"Essential Tremor",
"Healthy",
"Huntington Disease",
"Parkinson Disease",
]
class SE_Block(nn.Module):
def __init__(self, channel, reduction=16):
super(SE_Block, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid(), # Sigmoid activation to produce attention scores
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
class SqueezeNet1_0WithSE(nn.Module):
def __init__(self, num_classes, dropout_prob=0.5):
super(SqueezeNet1_0WithSE, self).__init__()
squeezenet = squeezenet1_0(weights=SqueezeNet1_0_Weights.DEFAULT)
self.features = squeezenet.features
self.classifier = nn.Sequential(
nn.Conv2d(512, num_classes, kernel_size=1),
nn.BatchNorm2d(num_classes), # add batch normalization
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1)),
)
self.dropout = nn.Dropout(
dropout_prob
) # Add dropout layer with the specified probability
# Adjust channel for SqueezeNet1.0 (original SqueezeNet1.0 has 1000 classes)
num_classes_squeezenet1_0 = 7
# Add Squeeze-and-Excitation block
self.se_block = SE_Block(
channel=num_classes_squeezenet1_0
) # Adjust channel as needed
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
# x = self.se_block(x) # Apply the SE block
x = F.dropout(x, training=self.training) # Apply dropout during training
x = torch.flatten(x, 1)
return x
class SqueezeNet1_1WithSE(nn.Module):
def __init__(self, num_classes, dropout_prob=0.2):
super(SqueezeNet1_1WithSE, self).__init__()
squeezenet = squeezenet1_1(weights=SqueezeNet1_1_Weights.DEFAULT)
self.features = squeezenet.features
self.classifier = nn.Sequential(
nn.Conv2d(512, num_classes, kernel_size=1),
nn.BatchNorm2d(num_classes), # add batch normalization
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1)),
)
self.dropout = nn.Dropout(
dropout_prob
) # Add dropout layer with the specified probability
# Add Squeeze-and-Excitation block
self.se_block = SE_Block(channel=num_classes) # Adjust channel as needed
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
x = self.se_block(x) # Apply the SE block
x = F.dropout(x, training=self.training) # Apply dropout during training
x = torch.flatten(x, 1)
return x
class EfficientNetB2WithDropout(nn.Module):
# 0.00022015769999619205
def __init__(self, num_classes, dropout_prob=0.2):
super(EfficientNetB2WithDropout, self).__init__()
efficientnet = efficientnet_b2(weights=EfficientNet_B2_Weights.DEFAULT)
self.features = efficientnet.features
self.classifier = nn.Sequential(
nn.Conv2d(1408, num_classes, kernel_size=1),
nn.BatchNorm2d(num_classes), # add batch normalization
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1)),
)
self.dropout = nn.Dropout(
dropout_prob
) # Add dropout layer with the specified probability
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
x = F.dropout(x, training=self.training) # Apply dropout during training
x = torch.flatten(x, 1)
return x
class EfficientNetB3WithDropout(nn.Module):
def __init__(self, num_classes, dropout_prob=0.2):
super(EfficientNetB3WithDropout, self).__init__()
efficientnet = efficientnet_b3(weights=EfficientNet_B3_Weights.DEFAULT)
self.features = efficientnet.features
self.classifier = nn.Sequential(
nn.Conv2d(1536, num_classes, kernel_size=1),
nn.BatchNorm2d(num_classes), # add batch normalization
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1)),
)
self.dropout = nn.Dropout(
dropout_prob
) # Add dropout layer with the specified probability
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
x = F.dropout(x, training=self.training) # Apply dropout during training
x = torch.flatten(x, 1)
return x
class ResNet18WithNorm(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet18WithNorm, self).__init__()
resnet = resnet18(pretrained=False)
# Remove the last block (Block 4)
self.features = nn.Sequential(
*list(resnet.children())[:-1] # Exclude the last block
)
self.classifier = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(
512, num_classes
), # Adjust input size for the fully connected layer
nn.BatchNorm1d(num_classes), # Add batch normalization
)
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
x = torch.flatten(x, 1)
return x
class MobileNetV3LargeWithDropout(nn.Module):
def __init__(self, num_classes, dropout_prob=0.2):
super(MobileNetV3LargeWithDropout, self).__init__()
mobilenet = mobilenet_v3_large(weights=MobileNet_V3_Large_Weights.DEFAULT)
self.features = mobilenet.features
self.classifier = nn.Sequential(
nn.Conv2d(960, num_classes, kernel_size=1),
nn.BatchNorm2d(num_classes), # add batch normalization
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1)),
)
self.dropout = nn.Dropout(
dropout_prob
) # Add dropout layer with the specified probability
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
x = F.dropout(x, training=self.training) # Apply dropout during training
x = torch.flatten(x, 1)
return x
class GoogLeNetWithSE(nn.Module):
def __init__(self, num_classes):
super(GoogLeNetWithSE, self).__init__()
googlenet = googlenet(weights=GoogLeNet_Weights.DEFAULT)
# self.features = googlenet.features
self.classifier = nn.Sequential(
nn.Conv2d(1024, num_classes, kernel_size=1),
nn.BatchNorm2d(num_classes), # add batch normalization
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1)),
)
# Add Squeeze-and-Excitation block
self.se_block = SE_Block(channel=num_classes) # Adjust channel as needed
def forward(self, x):
# x = self.features(x)
x = self.classifier(x)
x = self.se_block(x) # Apply the SE block
x = torch.flatten(x, 1)
return x
class MobileNetV2WithDropout(nn.Module):
def __init__(self, num_classes, dropout_prob=0.2):
super(MobileNetV2WithDropout, self).__init__()
mobilenet = mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT)
self.features = mobilenet.features
self.classifier = nn.Sequential(
nn.Conv2d(1280, num_classes, kernel_size=1),
nn.BatchNorm2d(num_classes), # add batch normalization
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1)),
)
self.dropout = nn.Dropout(
dropout_prob
) # Add dropout layer with the specified probability
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
x = F.dropout(x, training=self.training) # Apply dropout during training
x = torch.flatten(x, 1)
return x
MODEL = EfficientNetB3WithDropout(num_classes=NUM_CLASSES)
MODEL_SAVE_PATH = r"output/checkpoints/" + MODEL.__class__.__name__ + ".pth"
# MODEL_SAVE_PATH = r"C:\Users\User\Downloads\bestsqueezenetSE.pth"
preprocess = transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(), # Convert to tensor
# transforms.Grayscale(num_output_channels=3), # Convert to 3 channels
# Normalize 3 channels
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
# Custom dataset class
class CustomDataset(Dataset):
def __init__(self, dataset):
self.data = dataset
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
img, label = self.data[idx]
return img, label
def ensemble_predictions(models, image):
all_predictions = []
with torch.no_grad():
for model in models:
output = model(image)
all_predictions.append(output)
return torch.stack(all_predictions, dim=0).mean(dim=0)