cycool29's picture
Update
2347bbe
raw
history blame
8.18 kB
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision.transforms import transforms
from torch.utils.data import DataLoader, random_split, Dataset
from torchvision.datasets import ImageFolder
import matplotlib.pyplot as plt
from models import *
from scipy.ndimage import gaussian_filter1d
from torch.utils.tensorboard import SummaryWriter #print to tensorboard
from torchvision.utils import make_grid
# torch.cuda.empty_cache()
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:1024"
writer = SummaryWriter(log_dir='runs/Task1')
# Constants
RANDOM_SEED = 123
BATCH_SIZE = 64
NUM_EPOCHS = 100
LEARNING_RATE = 0.02750299610194638
STEP_SIZE = 10
GAMMA = 0.5
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
NUM_PRINT = 100
TASK = 1
ORIG_DATA_DIR = r"data/train/raw/Task " + str(TASK)
AUG_DATA_DIR = r"data/train/augmented/Task " + str(TASK)
NUM_CLASSES = len(os.listdir(ORIG_DATA_DIR))
# Define transformation for preprocessing
preprocess = transforms.Compose(
[
transforms.Resize((64, 64)), # Resize images to 64x64
transforms.ToTensor(), # Convert to tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # Normalize
]
)
# Error if the classes in the original dataset and augmented dataset are not the same
assert (
os.listdir(ORIG_DATA_DIR) == os.listdir(AUG_DATA_DIR)
), "Classes in original dataset and augmented dataset are not the same"
# Load the dataset using ImageFolder
original_dataset = ImageFolder(root=ORIG_DATA_DIR, transform=preprocess)
augmented_dataset = ImageFolder(root=AUG_DATA_DIR, transform=preprocess)
dataset = original_dataset + augmented_dataset
print("Classes: ", original_dataset.classes)
print("Length of original dataset: ", len(original_dataset))
print("Length of augmented dataset: ", len(augmented_dataset))
print("Length of total dataset: ", len(dataset))
# Custom dataset class
class CustomDataset(Dataset):
def __init__(self, dataset):
self.data = dataset
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
img, label = self.data[idx]
return img, label
# Split the dataset into train and validation sets
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
# Create data loaders for the custom dataset
train_loader = DataLoader(
CustomDataset(train_dataset), batch_size=BATCH_SIZE, shuffle=True, num_workers=0
)
valid_loader = DataLoader(
CustomDataset(val_dataset), batch_size=BATCH_SIZE, num_workers=0
)
# Initialize model, criterion, optimizer, and scheduler
model = mobilenet_v3_small(num_classes=NUM_CLASSES)
model = model.to(DEVICE)
criterion = nn.CrossEntropyLoss()
# Adam optimizer
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
# StepLR scheduler
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=STEP_SIZE, gamma=GAMMA)
# Lists to store training and validation loss history
TRAIN_LOSS_HIST = []
VAL_LOSS_HIST = []
AVG_TRAIN_LOSS_HIST = []
AVG_VAL_LOSS_HIST = []
TRAIN_ACC_HIST = []
VAL_ACC_HIST = []
# Training loop
for epoch in range(NUM_EPOCHS):
model.train(True) # Set model to training mode
running_loss = 0.0
total_train = 0
correct_train = 0
for i, (inputs, labels) in enumerate(train_loader, 0):
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if (i + 1) % NUM_PRINT == 0:
print(
"[Epoch %d, Batch %d] Loss: %.6f"
% (epoch + 1, i + 1, running_loss / NUM_PRINT)
)
running_loss = 0.0
_, predicted = torch.max(outputs, 1)
total_train += labels.size(0)
correct_train += (predicted == labels).sum().item()
TRAIN_ACC_HIST.append(correct_train / total_train)
TRAIN_LOSS_HIST.append(loss.item())
# Calculate the average training loss for the epoch
avg_train_loss = running_loss / len(train_loader)
writer.add_scalar('Loss/Train', avg_train_loss, epoch)
writer.add_scalar('Accuracy/Train', correct_train / total_train , epoch)
AVG_TRAIN_LOSS_HIST.append(avg_train_loss)
# Print average training loss for the epoch
print("[Epoch %d] Average Training Loss: %.6f" % (epoch + 1, avg_train_loss))
# Learning rate scheduling
lr_1 = optimizer.param_groups[0]["lr"]
print("Learning Rate: {:.15f}".format(lr_1))
scheduler.step()
# Validation loop
model.eval() # Set model to evaluation mode
val_loss = 0.0
correct_val = 0
total_val = 0
with torch.no_grad():
for inputs, labels in valid_loader:
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
# Calculate accuracy
_, predicted = torch.max(outputs, 1)
total_val += labels.size(0)
correct_val += (predicted == labels).sum().item()
VAL_LOSS_HIST.append(loss.item())
# Calculate the average validation loss for the epoch
avg_val_loss = val_loss / len(valid_loader)
AVG_VAL_LOSS_HIST.append(loss.item())
print("Average Validation Loss: %.6f" % (avg_val_loss))
# Calculate the accuracy of validation set
val_accuracy = correct_val / total_val
VAL_ACC_HIST.append(val_accuracy)
print("Validation Accuracy: %.6f" % (val_accuracy))
writer.add_scalar('Loss/Validation', avg_val_loss, epoch)
writer.add_scalar('Accuracy/Validation', val_accuracy, epoch)
# Add sample images to TensorBoard
sample_images, _ = next(iter(valid_loader)) # Get a batch of sample images
sample_images = sample_images.to(DEVICE)
grid_image = make_grid(sample_images, nrow=8, normalize=True) # Create a grid of images
writer.add_image('Sample Images', grid_image, global_step=epoch)
# End of training loop
# Save the model
model_save_path = "model.pth"
torch.save(model.state_dict(), model_save_path)
print("Model saved at", model_save_path)
print("Generating loss plot...")
# Make the plot smoother by interpolating the data
# https://stackoverflow.com/questions/5283649/plot-smooth-line-with-pyplot
# train_loss_line = gaussian_filter1d(TRAIN_LOSS_HIST, sigma=10)
# val_loss_line = gaussian_filter1d(VAL_LOSS_HIST, sigma=10)
# plt.plot(range(1, NUM_EPOCHS + 1), train_loss_line, label='Train Loss')
# plt.plot(range(1, NUM_EPOCHS + 1), val_loss_line, label='Validation Loss')
avg_train_loss_line = gaussian_filter1d(AVG_TRAIN_LOSS_HIST, sigma=2)
avg_val_loss_line = gaussian_filter1d(AVG_VAL_LOSS_HIST, sigma=2)
train_loss_line = gaussian_filter1d(TRAIN_LOSS_HIST, sigma=2)
val_loss_line = gaussian_filter1d(VAL_LOSS_HIST, sigma=2)
train_acc_line = gaussian_filter1d(TRAIN_ACC_HIST, sigma=2)
val_acc_line = gaussian_filter1d(VAL_ACC_HIST, sigma=2)
plt.plot(range(1, NUM_EPOCHS + 1), train_loss_line, label="Train Loss")
plt.plot(range(1, NUM_EPOCHS + 1), val_loss_line, label="Validation Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.title("Train Loss and Validation Loss")
plt.savefig("loss_plot.png")
plt.clf()
plt.plot(range(1, NUM_EPOCHS + 1), avg_train_loss_line, label="Average Train Loss")
plt.plot(range(1, NUM_EPOCHS + 1), avg_val_loss_line, label="Average Validation Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.title("Average Train Loss and Average Validation Loss")
plt.savefig("avg_loss_plot.png")
plt.clf()
plt.plot(range(1, NUM_EPOCHS + 1), train_acc_line, label="Train Accuracy")
plt.plot(range(1, NUM_EPOCHS + 1), val_acc_line, label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend()
plt.title("Train Accuracy and Validation Accuracy")
plt.savefig("accuracy_plot.png")
dummy_input = torch.randn(1, 3, 64, 64).to(DEVICE) # Adjust input shape accordingly
writer.add_graph(model, dummy_input)
# Close TensorBoard writer
writer.close()