SpiralSense / app.py
cycool29's picture
Update
97dcf92
raw
history blame
1.92 kB
import gradio as gr
import predict as predict
from googletrans import Translator, constants
from pprint import pprint
translator = Translator()
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def process_file(webcam_filepath, upload_filepath):
result = []
if webcam_filepath == None:
sorted_classes = predict.predict_image(upload_filepath)
for class_label, class_prob in sorted_classes:
class_prob = class_prob.item().__round__(2)
result.append(f"{class_label}: {class_prob}%")
return result
elif upload_filepath == None:
sorted_classes = predict.predict_image(webcam_filepath)
for class_label, class_prob in sorted_classes:
class_prob = class_prob.item().__round__(2)
result.append(f"{class_label}: {class_prob}%")
return result
else:
sorted_classes = predict.predict_image(upload_filepath)
for class_label, class_prob in sorted_classes:
class_prob = class_prob.item().__round__(2)
result.append(f"{class_label}: {class_prob}%")
return result
def generate_description(request: gr.Request):
translation = translator.translate(
"SqueezeNet-Based Deep Learning for Early Detection of Movement Disorders via Handwriting Assessment",
dest=str(request.request.headers["Accept-Language"].split(",")[0].lower()[0:2]),
)
return translation.text
demo = gr.Interface(
theme="gradio/soft",
fn=process_file,
title="HANDETECT",
# description=generate_description,
inputs=[
gr.components.Image(type="filepath", label="Choose Image", source="upload"),
],
outputs=[
gr.outputs.Textbox(label="Probability 1"),
gr.outputs.Textbox(label="Probability 2"),
gr.outputs.Textbox(label="Probability 3"),
],
)
demo.launch(inbrowser=True)