Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import torch.nn as nn | |
from torchvision import transforms | |
from PIL import Image | |
from models import * | |
from torchmetrics import ConfusionMatrix | |
import matplotlib.pyplot as plt | |
from configs import * | |
# Load your model (change this according to your model definition) | |
MODEL.load_state_dict( | |
torch.load(MODEL_SAVE_PATH, map_location=DEVICE) | |
) # Load the model on the same device | |
MODEL.eval() | |
MODEL = MODEL.to(DEVICE) | |
MODEL.eval() | |
torch.set_grad_enabled(False) | |
def predict_image(image_path, model=MODEL, transform=preprocess): | |
classes = CLASSES | |
print("---------------------------") | |
print("Image path:", image_path) | |
image = Image.open(image_path).convert("RGB") | |
image = transform(image).unsqueeze(0) | |
image = image.to(DEVICE) | |
output = model(image) | |
# Softmax algorithm | |
probabilities = torch.softmax(output, dim=1)[0] * 100 | |
# Sort the classes by probabilities in descending order | |
sorted_classes = sorted( | |
zip(classes, probabilities), key=lambda x: x[1], reverse=True | |
) | |
# Report the prediction for each class | |
print("Probabilities for each class:") | |
for class_label, class_prob in sorted_classes: | |
class_prob = class_prob.item().__round__(2) | |
print(f"{class_label}: {class_prob}%") | |
# Get the predicted class | |
predicted_class = sorted_classes[0][0] # Most probable class | |
predicted_label = classes.index(predicted_class) | |
# Report the prediction | |
print("Predicted class:", predicted_label) | |
print("Predicted label:", predicted_class) | |
return sorted_classes | |