File size: 9,172 Bytes
e6f2a04
 
 
 
 
97dcf92
e6f2a04
 
 
 
643d383
97dcf92
643d383
97dcf92
643d383
 
97dcf92
643d383
97dcf92
 
e6f2a04
 
97dcf92
 
 
 
 
 
 
 
 
 
59908f1
97dcf92
 
 
 
59908f1
97dcf92
 
 
 
643d383
 
 
 
 
97dcf92
643d383
97dcf92
 
 
 
643d383
97dcf92
 
 
643d383
97dcf92
643d383
97dcf92
 
 
 
 
 
 
 
 
643d383
 
59908f1
 
97dcf92
01b64d6
59908f1
 
 
 
 
 
 
643d383
59908f1
 
 
 
e6f2a04
 
 
59908f1
643d383
59908f1
e6f2a04
 
 
 
 
 
 
643d383
97dcf92
 
643d383
 
 
97dcf92
 
643d383
e6f2a04
59908f1
e6f2a04
 
 
 
97dcf92
 
e6f2a04
 
 
 
 
 
 
 
59908f1
 
 
 
 
e6f2a04
 
 
 
 
 
 
59908f1
e6f2a04
 
 
 
 
 
 
59908f1
 
 
 
 
 
 
 
 
 
 
97dcf92
59908f1
 
 
 
 
 
97dcf92
 
 
59908f1
97dcf92
59908f1
 
 
97dcf92
59908f1
 
 
 
 
 
 
 
 
 
97dcf92
 
 
 
 
 
 
 
 
 
59908f1
 
97dcf92
 
 
 
 
 
 
 
 
59908f1
 
 
 
 
 
 
 
 
 
97dcf92
59908f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97dcf92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b5593
 
59908f1
97dcf92
59908f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01b64d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
from matplotlib import rcParams
from models import *
from torch.utils.tensorboard import SummaryWriter
from configs import *
import data_loader
import torch.nn.functional as F
import csv
import numpy as np
from torchcontrib.optim import SWA


rcParams["font.family"] = "Times New Roman"

SWA_START = 5  # Starting epoch for SWA
SWA_FREQ = 5  # Frequency of updating SWA weights


def rand_bbox(size, lam):
    W = size[2]
    H = size[3]
    cut_rat = np.sqrt(1.0 - lam)
    cut_w = np.int_(W * cut_rat)
    cut_h = np.int_(H * cut_rat)

    # uniform
    cx = np.random.randint(W)
    cy = np.random.randint(H)

    bbx1 = np.clip(cx - cut_w // 2, 0, W)
    bby1 = np.clip(cy - cut_h // 2, 0, H)
    bbx2 = np.clip(cx + cut_w // 2, 0, W)
    bby2 = np.clip(cy + cut_h // 2, 0, H)

    return bbx1, bby1, bbx2, bby2


def cutmix_data(input, target, alpha=1.0):
    if alpha > 0:
        lam = np.random.beta(alpha, alpha)
    else:
        lam = 1

    batch_size = input.size()[0]
    index = torch.randperm(batch_size)
    rand_index = torch.randperm(input.size()[0])

    bbx1, bby1, bbx2, bby2 = rand_bbox(input.size(), lam)
    input[:, :, bbx1:bbx2, bby1:bby2] = input[rand_index, :, bbx1:bbx2, bby1:bby2]

    lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (input.size()[-1] * input.size()[-2]))
    targets_a = target
    targets_b = target[rand_index]

    return input, targets_a, targets_b, lam


def cutmix_criterion(criterion, outputs, targets_a, targets_b, lam):
    return lam * criterion(outputs, targets_a) + (1 - lam) * criterion(
        outputs, targets_b
    )


def setup_tensorboard():
    return SummaryWriter(log_dir="output/tensorboard/training")


def load_and_preprocess_data():
    return data_loader.load_data(
        COMBINED_DATA_DIR + "1",
        preprocess,
    )


def initialize_model_optimizer_scheduler():
    model = MODEL.to(DEVICE)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
    scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=NUM_EPOCHS)
    return model, criterion, optimizer, scheduler


def plot_and_log_metrics(metrics_dict, step, writer, prefix="Train"):
    for metric_name, metric_value in metrics_dict.items():
        writer.add_scalar(f"{prefix}/{metric_name}", metric_value, step)


def train_one_epoch(model, criterion, optimizer, train_loader, epoch, alpha):
    model.train()
    running_loss = 0.0
    total_train = 0
    correct_train = 0

    for i, (inputs, labels) in enumerate(train_loader, 0):
        inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
        optimizer.zero_grad()

        # Apply CutMix
        inputs, targets_a, targets_b, lam = cutmix_data(inputs, labels, alpha=1)

        outputs = model(inputs)

        # Calculate CutMix loss
        loss = cutmix_criterion(criterion, outputs, targets_a, targets_b, lam)

        loss.backward()
        optimizer.step()
        running_loss += loss.item()

        if (i + 1) % NUM_PRINT == 0:
            print(
                f"[Epoch {epoch + 1}, Batch {i + 1}/{len(train_loader)}] "
                f"Loss: {running_loss / NUM_PRINT:.6f}"
            )
            running_loss = 0.0

        _, predicted = torch.max(outputs, 1)
        total_train += labels.size(0)
        correct_train += (predicted == labels).sum().item()

    avg_train_loss = running_loss / len(train_loader)
    return avg_train_loss, correct_train / total_train


def validate_model(model, criterion, valid_loader):
    model.eval()
    val_loss = 0.0
    correct_val = 0
    total_val = 0

    with torch.no_grad():
        for inputs, labels in valid_loader:
            inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            val_loss += loss.item()
            _, predicted = torch.max(outputs, 1)
            total_val += labels.size(0)
            correct_val += (predicted == labels).sum().item()

    avg_val_loss = val_loss / len(valid_loader)
    return avg_val_loss, correct_val / total_val


def main_training_loop():
    writer = setup_tensorboard()
    train_loader, valid_loader = load_and_preprocess_data()
    model, criterion, optimizer, scheduler = initialize_model_optimizer_scheduler()

    best_val_loss = float("inf")
    best_val_accuracy = 0.0
    no_improvement_count = 0
    epoch_metrics = []

    AVG_TRAIN_LOSS_HIST = []
    AVG_VAL_LOSS_HIST = []
    TRAIN_ACC_HIST = []
    VAL_ACC_HIST = []

    # Initialize SWA optimizer
    swa_optimizer = SWA(optimizer, swa_start=SWA_START, swa_freq=SWA_FREQ)

    for epoch in range(NUM_EPOCHS):
        print(f"\n[Epoch: {epoch + 1}/{NUM_EPOCHS}]")
        print("Learning rate:", scheduler.get_last_lr()[0])

        avg_train_loss, train_accuracy = train_one_epoch(
            model, criterion, optimizer, train_loader, epoch, CUTMIX_ALPHA
        )
        AVG_TRAIN_LOSS_HIST.append(avg_train_loss)
        TRAIN_ACC_HIST.append(train_accuracy)

        # Log training metrics
        train_metrics = {
            "Loss": avg_train_loss,
            "Accuracy": train_accuracy,
        }
        plot_and_log_metrics(train_metrics, epoch, writer=writer, prefix="Train")
        epoch_metrics.append(
            {
                "Epoch": epoch + 1,
                "Train Loss": avg_train_loss,
                "Train Accuracy": train_accuracy,
                "Validation Loss": avg_val_loss,
                "Validation Accuracy": val_accuracy,
                "Learning Rate": scheduler.get_last_lr()[0],
            }
        )

        # Learning rate scheduling

        if epoch < WARMUP_EPOCHS:
            # Linear warm-up phase
            lr = LEARNING_RATE * (epoch + 1) / WARMUP_EPOCHS
            for param_group in optimizer.param_groups:
                param_group["lr"] = lr
        else:
            # Cosine annealing scheduler after warm-up
            scheduler.step()

        avg_val_loss, val_accuracy = validate_model(model, criterion, valid_loader)
        AVG_VAL_LOSS_HIST.append(avg_val_loss)
        VAL_ACC_HIST.append(val_accuracy)

        # Log validation metrics
        val_metrics = {
            "Loss": avg_val_loss,
            "Accuracy": val_accuracy,
        }
        plot_and_log_metrics(val_metrics, epoch, writer=writer, prefix="Validation")

        # Print average training and validation metrics
        print(f"Average Training Loss: {avg_train_loss:.6f}")
        print(f"Average Validation Loss: {avg_val_loss:.6f}")
        print(f"Training Accuracy: {train_accuracy:.6f}")
        print(f"Validation Accuracy: {val_accuracy:.6f}")

        # Check for early stopping based on validation accuracy
        if val_accuracy > best_val_accuracy:
            best_val_accuracy = val_accuracy
            no_improvement_count = 0
        else:
            no_improvement_count += 1

        # Early stopping condition
        if no_improvement_count >= EARLY_STOPPING_PATIENCE:
            print(
                "Early stopping: Validation accuracy did not improve for {} consecutive epochs.".format(
                    EARLY_STOPPING_PATIENCE
                )
            )
            break

        # Update SWA weights
        if epoch >= SWA_START and epoch % SWA_FREQ == 0:
            swa_optimizer.update_swa()

    # Apply SWA to the final model weights
    swa_optimizer.swap_swa_sgd()
    csv_filename = "training_metrics.csv"

    with open(csv_filename, mode="w", newline="") as csv_file:
        fieldnames = [
            "Epoch",
            "Train Loss",
            "Train Accuracy",
            "Validation Loss",
            "Validation Accuracy",
            "Learning Rate",
        ]

        writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
        writer.writeheader()

        for metric in epoch_metrics:
            writer.writerow(metric)

    print(f"Metrics saved to {csv_filename}")

    # Ensure the parent directory exists
    os.makedirs(os.path.dirname(MODEL_SAVE_PATH), exist_ok=True)
    torch.save(model.state_dict(), MODEL_SAVE_PATH)
    print("\nModel saved at", MODEL_SAVE_PATH)

    # Plot loss and accuracy curves
    plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    plt.plot(
        range(1, len(AVG_TRAIN_LOSS_HIST) + 1),
        AVG_TRAIN_LOSS_HIST,
        label="Average Train Loss",
    )
    plt.plot(
        range(1, len(AVG_VAL_LOSS_HIST) + 1),
        AVG_VAL_LOSS_HIST,
        label="Average Validation Loss",
    )
    plt.xlabel("Epochs")
    plt.ylabel("Loss")
    plt.legend()
    plt.title("Loss Curves")

    plt.subplot(1, 2, 2)
    plt.plot(range(1, len(TRAIN_ACC_HIST) + 1), TRAIN_ACC_HIST, label="Train Accuracy")
    plt.plot(range(1, len(VAL_ACC_HIST) + 1), VAL_ACC_HIST, label="Validation Accuracy")
    plt.xlabel("Epochs")
    plt.ylabel("Accuracy")
    plt.legend()
    plt.title("Accuracy Curves")

    plt.tight_layout()
    plt.savefig("training_curves.png")

    # Close TensorBoard writer
    writer.close()


if __name__ == "__main__":
    main_training_loop()