File size: 4,531 Bytes
73666ad
c45c4e1
 
 
 
 
 
73666ad
c45c4e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90a1747
c45c4e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73666ad
 
 
90a1747
 
 
 
 
c45c4e1
 
 
 
 
90a1747
c45c4e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73666ad
 
c45c4e1
90a1747
 
 
 
 
 
73666ad
 
 
 
 
 
 
 
90a1747
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import numpy as np
from lime.lime_image import LimeImageExplainer
from PIL import Image
import torch
import matplotlib.pyplot as plt
from configs import *
import time


model = MODEL.to(DEVICE)
model.load_state_dict(torch.load(MODEL_SAVE_PATH))
model.eval()


# Define a function to predict with the model
def predict(input_image):
    input_image = torch.tensor(input_image, dtype=torch.float32)
    if input_image.dim() == 4:
        input_image = input_image.permute(0, 3, 1, 2)  # Permute the dimensions
    input_image = input_image.to(DEVICE)  # Move to the appropriate device
    with torch.no_grad():
        output = model(input_image)
    return output


def generate_lime(image_path=None, save_path=None):
    if image_path is None:
        for disease in CLASSES:
            print("Processing", disease)
            for image_path in os.listdir(r"data\test\Task 1\{}".format(disease)):
                image = None
                print("Processing", image_path)
                image_path = r"data\test\Task 1\{}\{}".format(disease, image_path)
                image_name = image_path.split(".")[0].split("\\")[-1]
                image = Image.open(image_path).convert("RGB")
                width, height = image.size
                image = preprocess(image)
                image = image.unsqueeze(0)  # Add batch dimension
                image = image.to(DEVICE)

                # Create the LIME explainer
                explainer = LimeImageExplainer()

                # Explain the model's predictions for the image
                explanation = explainer.explain_instance(
                    image[0].permute(1, 2, 0).numpy(),
                    predict,
                    top_labels=5,
                    num_samples=1000,
                )

                # Get the image and mask for the explanation
                image, mask = explanation.get_image_and_mask(
                    explanation.top_labels[0],
                    positive_only=False,
                    num_features=10,
                    hide_rest=False,
                )

                # Save the image (dun use plt.imsave)
                # Normalize the image to the [0, 1] range
                # norm = Normalize(vmin=0, vmax=1)
                # image = norm(image)

                image = (image - np.min(image)) / (np.max(image) - np.min(image))

                # image = Image.fromarray(image)
                os.makedirs(f"docs/evaluation/lime/{disease}", exist_ok=True)
                # image.save(f'docs/evaluation/lime/{disease}/{image_name}.jpg')
                plt.imsave(f"docs/evaluation/lime/{disease}/{image_name}.jpg", image)
                
                # Resize the image to the original size
                image = Image.open(f"docs/evaluation/lime/{disease}/{image_name}.jpg")
                image = image.resize((width, height))   
                image.save(f"docs/evaluation/lime/{disease}/{image_name}.jpg")

    else:
        image = None
        print("Processing", image_path)
        image = Image.open(image_path).convert("RGB")
        width, height = image.size
        image = preprocess(image)
        image = image.unsqueeze(0)  # Add batch dimension
        image = image.to(DEVICE)

        # Create the LIME explainer
        explainer = LimeImageExplainer()

        # Explain the model's predictions for the image
        explanation = explainer.explain_instance(
            image[0].permute(1, 2, 0).numpy(), predict, top_labels=5, num_samples=1000
        )

        # Get the image and mask for the explanation
        image, mask = explanation.get_image_and_mask(
            explanation.top_labels[0],
            positive_only=False,
            num_features=10,
            hide_rest=False,
        )

        # Save the image (dun use plt.imsave)
        # Normalize the image to the [0, 1] range
        # norm = Normalize(vmin=0, vmax=1)
        # image = norm(image)

        image = (image - np.min(image)) / (np.max(image) - np.min(image))

        # image = Image.fromarray(image)
        # os.makedirs(f"docs/evaluation/lime/{disease}", exist_ok=True)
        # image.save(f'docs/evaluation/lime/{disease}/{image_name}.jpg')
        plt.imsave(save_path, image)
        
        # Resize the image to the original size
        image = Image.open(save_path)
        image = image.resize((width, height))
        image.save(save_path)
        


# start = time.time()

# generate_lime()

# end = time.time()

# print("Time taken:", end - start)