File size: 4,437 Bytes
b828b8f
0439cf9
73666ad
 
c45c4e1
b828b8f
 
 
 
 
 
c45c4e1
 
 
 
 
 
 
 
b828b8f
c45c4e1
 
 
 
 
 
73666ad
66ca063
b828b8f
c45c4e1
 
73666ad
c45c4e1
 
 
 
73666ad
c45c4e1
 
 
 
 
 
 
 
76ad0d6
 
c45c4e1
 
76ad0d6
 
c45c4e1
 
 
6dbd3e7
c45c4e1
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbd3e7
 
 
 
76ad0d6
6dbd3e7
 
 
 
 
 
 
 
 
 
c45c4e1
 
626d4fb
c45c4e1
 
 
 
 
626d4fb
 
 
 
 
 
c45c4e1
 
 
 
 
 
 
5e1007e
 
 
 
 
 
 
 
626d4fb
 
 
 
 
 
c45c4e1
 
76ad0d6
c45c4e1
 
 
 
 
 
5e1007e
 
 
 
 
 
 
 
 
 
 
c45c4e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b828b8f
5e1007e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import gradio as gr
import predict as predict
import extract_gradcam as extract_gradcam
import extract_lime as extract_lime


def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths


def process_file(
    upload_filepath,
    gradcam_toggle,
    lime_toggle,
):
    print("Upload filepath:", upload_filepath)
    print("GradCAM toggle:", gradcam_toggle)
    print("LIME toggle:", lime_toggle)
    result = []
    sorted_classes = predict.predict_image(upload_filepath)
    for class_label, class_prob in sorted_classes:
        class_prob = class_prob.item().__round__(2)
        result.append(f"{class_label}: {class_prob}%")
    result = result[:4]
    if gradcam_toggle == True:
        cam = extract_gradcam.extract_gradcam(upload_filepath, save_path="gradcam.jpg")
        result.append("gradcam.jpg")
    else:
        result.append(None)
    if lime_toggle == True:
        lime = extract_lime.generate_lime(upload_filepath, save_path="lime.jpg")
        result.append("lime.jpg")
    else:
        result.append(None)
    return result


css = """
.block {
    margin-left: auto;
    margin-right: auto;
    width: 100%;
}
#image_input {
    width: 300px !important;
    height: 300px !important;
}
#image_input img {
    width: 300px !important;
    height: 300px !important;
}
.output-image {
    width: 70% !important;
    text-align: -webkit-center !important;
}
.output-image img {
    width:  300px !important;
}
.toggle {
    width: 17% !important;
}
.show-api {
    visibility: hidden !important;
}

.built-with {
    visibility: hidden !important;
}

#title-label {
    font-size: 35px !important;
    text-align: -webkit-center !important;
    margin-block-end: -55px;
}
#desc-label {
    font-size: 15px !important;
    text-align: -webkit-center !important;
}

.output-class.svelte-75gm11.svelte-75gm11.svelte-75gm11 {
    font-size: unset !important;
}

"""

block = gr.Blocks(title="NeuroDetect", css=css, theme="gradio/soft")

block.queue()

with block as demo:
    with gr.Column():
        gr.Label("NeuroDetect", elem_id="title-label", show_label=False)
        # gr.Label(
        #     "A Stress-free, Portable, and Cost-effective Machine Learning-Powered Web Application for Early Detection of Multiple Neurological Disorders through Spiral Drawing Analysis",
        #     elem_id="desc-label",
        #     show_label=False,
        # )
        with gr.Row():
            image_input = gr.Image(
                type="filepath",
                label="Choose Image",
                source="upload",
                elem_id="image_input",
            )
            with gr.Column():
                gr.Markdown(
                    """
                    <h4>Feature Explanations</h4>
                    """
                )
                gradcam_toggle = gr.Checkbox(label="GradCAM++")
                lime_toggle = gr.Checkbox(label="LIME")
                # warning_of_slow = gr.Label(
                #     "Warning: Feature Explanation may take a very long time to load.",
                #     elem_id="warning_of_slow",
                #     color="red",
                #     show_label=False,
                # )
        with gr.Row():
            submit_button = gr.Button(value="Submit")
        gr.Markdown("<br>")
        with gr.Row():
            prob1_textbox = gr.outputs.Textbox(label="Probability 1")
            prob2_textbox = gr.outputs.Textbox(label="Probability 2")
            prob3_textbox = gr.outputs.Textbox(label="Probability 3")
            prob4_textbox = gr.outputs.Textbox(label="Probability 4")
            # GradCAM
        with gr.Row():
            gradcam_output = gr.Image(
                label="GradCAM++",
                type="filepath",
                elem_classes=["output-image"],
            )
            lime_output = gr.Image(
                label="LIME",
                type="filepath",
                elem_classes=["output-image"],
            )

        submit_button.click(
            process_file,
            [image_input, gradcam_toggle, lime_toggle],
            [
                prob1_textbox,
                prob2_textbox,
                prob3_textbox,
                prob4_textbox,
                gradcam_output,
                lime_output,
            ],
            show_progress="minimal",
            preprocess=upload_file,
            scroll_to_output=True,
        )


demo.launch()