File size: 6,190 Bytes
e6f2a04
 
 
 
 
 
 
 
 
 
 
59908f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6f2a04
 
 
59908f1
 
 
e6f2a04
 
 
 
 
 
 
59908f1
 
672baaa
59908f1
e6f2a04
 
59908f1
e6f2a04
 
 
 
 
 
 
 
 
 
 
 
 
 
59908f1
 
 
 
 
e6f2a04
 
 
 
 
 
 
59908f1
e6f2a04
 
 
 
 
 
 
59908f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b5593
 
 
 
59908f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b5593
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
from models import *
from torch.utils.tensorboard import SummaryWriter
from configs import *
import data_loader


def setup_tensorboard():
    return SummaryWriter(log_dir="output/tensorboard/training")


def load_and_preprocess_data():
    return data_loader.load_data(
        RAW_DATA_DIR + str(TASK), AUG_DATA_DIR + str(TASK), EXTERNAL_DATA_DIR + str(TASK), preprocess
    )


def initialize_model_optimizer_scheduler():
    model = MODEL.to(DEVICE)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=STEP_SIZE, gamma=GAMMA)
    return model, criterion, optimizer, scheduler


def plot_and_log_metrics(metrics_dict, step, writer, prefix="Train"):
    for metric_name, metric_value in metrics_dict.items():
        writer.add_scalar(f"{prefix}/{metric_name}", metric_value, step)


def train_one_epoch(model, criterion, optimizer, train_loader, epoch):
    model.train()
    running_loss = 0.0
    total_train = 0
    correct_train = 0

    for i, (inputs, labels) in enumerate(train_loader, 0):
        inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
        optimizer.zero_grad()
        if model.__class__.__name__ == "GoogLeNet":
            outputs = model(inputs).logits
        else:
            outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()

        if (i + 1) % NUM_PRINT == 0:
            print(
                "[Epoch %d, Batch %d] Loss: %.6f"
                % (epoch + 1, i + 1, running_loss / NUM_PRINT)
            )
            running_loss = 0.0

        _, predicted = torch.max(outputs, 1)
        total_train += labels.size(0)
        correct_train += (predicted == labels).sum().item()

    avg_train_loss = running_loss / len(train_loader)
    return avg_train_loss, correct_train / total_train


def validate_model(model, criterion, valid_loader):
    model.eval()
    val_loss = 0.0
    correct_val = 0
    total_val = 0

    with torch.no_grad():
        for inputs, labels in valid_loader:
            inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            val_loss += loss.item()
            _, predicted = torch.max(outputs, 1)
            total_val += labels.size(0)
            correct_val += (predicted == labels).sum().item()

    avg_val_loss = val_loss / len(valid_loader)
    return avg_val_loss, correct_val / total_val


def main_training_loop():
    writer = setup_tensorboard()
    train_loader, valid_loader = load_and_preprocess_data()
    model, criterion, optimizer, scheduler = initialize_model_optimizer_scheduler()

    best_val_loss = float("inf")
    best_val_accuracy = 0.0
    no_improvement_count = 0

    AVG_TRAIN_LOSS_HIST = []
    AVG_VAL_LOSS_HIST = []
    TRAIN_ACC_HIST = []
    VAL_ACC_HIST = []

    for epoch in range(NUM_EPOCHS):
        print(f"[Epoch: {epoch + 1}]")
        print("Learning rate:", scheduler.get_last_lr()[0])

        avg_train_loss, train_accuracy = train_one_epoch(
            model, criterion, optimizer, train_loader, epoch
        )
        AVG_TRAIN_LOSS_HIST.append(avg_train_loss)
        TRAIN_ACC_HIST.append(train_accuracy)

        # Log training metrics
        train_metrics = {
            "Loss": avg_train_loss,
            "Accuracy": train_accuracy,
        }
        plot_and_log_metrics(train_metrics, epoch, writer=writer, prefix="Train")

        # Learning rate scheduling
        scheduler.step()

        avg_val_loss, val_accuracy = validate_model(model, criterion, valid_loader)
        AVG_VAL_LOSS_HIST.append(avg_val_loss)
        VAL_ACC_HIST.append(val_accuracy)

        # Log validation metrics
        val_metrics = {
            "Loss": avg_val_loss,
            "Accuracy": val_accuracy,
        }
        plot_and_log_metrics(train_metrics, epoch, writer=writer, prefix="Train")

        # Print average training and validation metrics
        print(f"Average Training Loss: {avg_train_loss:.6f}")
        print(f"Average Validation Loss: {avg_val_loss:.6f}")
        print(f"Training Accuracy: {train_accuracy:.6f}")
        print(f"Validation Accuracy: {val_accuracy:.6f}")

        # Check for early stopping based on validation accuracy
        if val_accuracy > best_val_accuracy:
            best_val_accuracy = val_accuracy
            no_improvement_count = 0
        else:
            no_improvement_count += 1

        # Early stopping condition
        if no_improvement_count >= EARLY_STOPPING_PATIENCE:
            print(
                "Early stopping: Validation accuracy did not improve for {} consecutive epochs.".format(
                    EARLY_STOPPING_PATIENCE
                )
            )
            break

    # Save the model
    MODEL_SAVE_PATH = "output/checkpoints/model.pth"

    # Ensure the parent directory exists
    os.makedirs(os.path.dirname(MODEL_SAVE_PATH), exist_ok=True)
    torch.save(model.state_dict(), MODEL_SAVE_PATH)
    print("Model saved at", MODEL_SAVE_PATH)

    # Plot loss and accuracy curves
    plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    plt.plot(
        range(1, len(AVG_TRAIN_LOSS_HIST) + 1),
        AVG_TRAIN_LOSS_HIST,
        label="Average Train Loss",
    )
    plt.plot(
        range(1, len(AVG_VAL_LOSS_HIST) + 1),
        AVG_VAL_LOSS_HIST,
        label="Average Validation Loss",
    )
    plt.xlabel("Epochs")
    plt.ylabel("Loss")
    plt.legend()
    plt.title("Loss Curves")

    plt.subplot(1, 2, 2)
    plt.plot(range(1, len(TRAIN_ACC_HIST) + 1), TRAIN_ACC_HIST, label="Train Accuracy")
    plt.plot(range(1, len(VAL_ACC_HIST) + 1), VAL_ACC_HIST, label="Validation Accuracy")
    plt.xlabel("Epochs")
    plt.ylabel("Accuracy")
    plt.legend()
    plt.title("Accuracy Curves")

    plt.tight_layout()
    plt.savefig("training_curves.png")

    # Close TensorBoard writer
    writer.close()


if __name__ == "__main__":
    main_training_loop()