File size: 1,694 Bytes
e6f2a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d7b040
e6f2a04
 
 
9d7b040
e6f2a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d7b040
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import torch
import torch.nn as nn
from torchvision import transforms
from PIL import Image
from models import *
from torchmetrics import ConfusionMatrix
import matplotlib.pyplot as plt
from configs import *


# Load your model (change this according to your model definition)
MODEL.load_state_dict(
    torch.load(MODEL_SAVE_PATH, map_location=DEVICE)
)  # Load the model on the same device
MODEL.eval()
MODEL = MODEL.to(DEVICE)
MODEL.eval()
torch.set_grad_enabled(False)


def predict_image(image_path, model=MODEL, transform=preprocess):
    classes = CLASSES

    print("---------------------------")
    print("Image path:", image_path)
    image = Image.open(image_path).convert("RGB")
    image = transform(image).unsqueeze(0)
    image = image.to(DEVICE)
    output = model(image)

    # Softmax algorithm
    probabilities = torch.softmax(output, dim=1)[0] * 100

    # Sort the classes by probabilities in descending order
    sorted_classes = sorted(
        zip(classes, probabilities), key=lambda x: x[1], reverse=True
    )

    # Report the prediction for each class
    print("Probabilities for each class:")
    for class_label, class_prob in sorted_classes:
        class_prob = class_prob.item().__round__(2)
        print(f"{class_label}: {class_prob}%")

    # Get the predicted class
    predicted_class = sorted_classes[0][0]  # Most probable class
    predicted_label = classes.index(predicted_class)

    # Report the prediction
    print("Predicted class:", predicted_label)
    print("Predicted label:", predicted_class)
    print("---------------------------")

    return predicted_label, sorted_classes


predict_image("data/test/Task 1/Healthy/01.png")