Spaces:
Runtime error
Runtime error
File size: 7,100 Bytes
e6f2a04 643d383 e6f2a04 92bf372 643d383 92bf372 643d383 97dcf92 e6f2a04 97dcf92 e6f2a04 97dcf92 e6f2a04 97dcf92 e6f2a04 97dcf92 e6f2a04 97dcf92 9d7b040 97dcf92 e6f2a04 97dcf92 e6f2a04 97dcf92 e6f2a04 9d7b040 e6f2a04 97dcf92 e6f2a04 97dcf92 e6f2a04 97dcf92 e6f2a04 97dcf92 e6f2a04 92bf372 97dcf92 92bf372 97dcf92 643d383 97dcf92 643d383 92bf372 97dcf92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import os
import torch
import numpy as np
import pathlib
from PIL import Image
import matplotlib.pyplot as plt
from sklearn.metrics import (
classification_report,
precision_recall_curve,
accuracy_score,
f1_score,
confusion_matrix,
ConfusionMatrixDisplay,
)
from sklearn.preprocessing import label_binarize
from torchvision import transforms
from configs import *
# EfficientNet: 0.901978973407545
# MobileNet: 0.8731189445475158
# SquuezeNet: 0.8559218559218559
# Constants
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
NUM_AUGMENTATIONS = 10 # Number of augmentations to perform
model2 = EfficientNetB2WithDropout(num_classes=NUM_CLASSES).to(DEVICE)
model2.load_state_dict(torch.load("output/checkpoints/EfficientNetB2WithDropout.pth"))
model1 = SqueezeNet1_0WithSE(num_classes=NUM_CLASSES).to(DEVICE)
model1.load_state_dict(torch.load("output/checkpoints/SqueezeNet1_0WithSE.pth"))
model3 = MobileNetV2WithDropout(num_classes=NUM_CLASSES).to(DEVICE)
model3.load_state_dict(torch.load("output\checkpoints\MobileNetV2WithDropout.pth"))
best_weights = [0.901978973407545, 0.8731189445475158, 0.8559218559218559]
# Load the model
model = WeightedVoteEnsemble([model1, model2, model3], best_weights)
# model.load_state_dict(torch.load(MODEL_SAVE_PATH, map_location=DEVICE))
model.load_state_dict(torch.load('output/checkpoints/WeightedVoteEnsemble.pth', map_location=DEVICE))
model.eval()
# define augmentations for TTA
tta_transforms = transforms.Compose(
[
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomVerticalFlip(p=0.5),
]
)
def perform_tta(model, image, tta_transforms):
augmented_predictions = []
augmented_scores = []
for _ in range(NUM_AUGMENTATIONS):
augmented_image = tta_transforms(image)
output = model(augmented_image)
predicted_class = torch.argmax(output, dim=1).item()
augmented_predictions.append(predicted_class)
augmented_scores.append(output.softmax(dim=1).cpu().numpy())
# max voting
final_predicted_class_max = max(
set(augmented_predictions), key=augmented_predictions.count
)
# average probabilities
final_predicted_scores_avg = np.mean(np.array(augmented_scores), axis=0)
# rotate and average probabilities
rotation_transforms = [
transforms.RandomRotation(degrees=i) for i in range(0, 360, 30)
]
rotated_scores = []
for rotation_transform in rotation_transforms:
augmented_image = rotation_transform(image)
output = model(augmented_image)
rotated_scores.append(output.softmax(dim=1).cpu().numpy())
final_predicted_scores_rotation = np.mean(np.array(rotated_scores), axis=0)
return (
final_predicted_class_max,
final_predicted_scores_avg,
final_predicted_scores_rotation,
)
def predict_image_with_tta(image_path, model, transform, tta_transforms):
model.eval()
correct_predictions = 0
true_classes = []
predicted_labels_max = []
predicted_labels_avg = []
predicted_labels_rotation = []
with torch.no_grad():
images = list(pathlib.Path(image_path).rglob("*.png"))
total_predictions = len(images)
for image_file in images:
true_class = CLASSES.index(image_file.parts[-2])
original_image = Image.open(image_file).convert("RGB")
original_image = transform(original_image).unsqueeze(0)
original_image = original_image.to(DEVICE)
# Perform TTA with different strategies
final_predicted_class_max, _, _ = perform_tta(
model, original_image, tta_transforms
)
_, final_predicted_scores_avg, _ = perform_tta(
model, original_image, tta_transforms
)
_, _, final_predicted_scores_rotation = perform_tta(
model, original_image, tta_transforms
)
true_classes.append(true_class)
predicted_labels_max.append(final_predicted_class_max)
predicted_labels_avg.append(np.argmax(final_predicted_scores_avg))
predicted_labels_rotation.append(np.argmax(final_predicted_scores_rotation))
if final_predicted_class_max == true_class:
correct_predictions += 1
# accuracy for each strategy
accuracy_max = accuracy_score(true_classes, predicted_labels_max)
accuracy_avg = accuracy_score(true_classes, predicted_labels_avg)
accuracy_rotation = accuracy_score(true_classes, predicted_labels_rotation)
print("Accuracy (Max Voting):", accuracy_max)
print("Accuracy (Average Probabilities):", accuracy_avg)
print("Accuracy (Rotation and Average):", accuracy_rotation)
# final prediction using ensemble (choose the strategy with the highest accuracy)
final_predicted_labels = []
for i in range(len(true_classes)):
max_strategy_accuracy = max(accuracy_max, accuracy_avg, accuracy_rotation)
if accuracy_max == max_strategy_accuracy:
final_predicted_labels.append(predicted_labels_max[i])
elif accuracy_avg == max_strategy_accuracy:
final_predicted_labels.append(predicted_labels_avg[i])
else:
final_predicted_labels.append(predicted_labels_rotation[i])
# calculate accuracy and f1 score(ensemble)
accuracy_ensemble = accuracy_score(true_classes, final_predicted_labels)
f1_ensemble = f1_score(true_classes, final_predicted_labels, average="weighted")
print("Ensemble Accuracy:", accuracy_ensemble)
print("Ensemble Weighted F1 Score:", f1_ensemble)
# Classification report
class_names = [str(cls) for cls in range(NUM_CLASSES)]
report = classification_report(
true_classes, final_predicted_labels, target_names=class_names
)
print("Classification Report of", MODEL.__class__.__name__, ":\n", report)
# confusion matrix and classification report for the ensemble
conf_matrix_ensemble = confusion_matrix(true_classes, final_predicted_labels)
ConfusionMatrixDisplay(
confusion_matrix=conf_matrix_ensemble, display_labels=range(NUM_CLASSES)
).plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix (Ensemble)")
plt.show()
class_names = [str(cls) for cls in range(NUM_CLASSES)]
report_ensemble = classification_report(
true_classes, final_predicted_labels, target_names=class_names
)
print("Classification Report (Ensemble):\n", report_ensemble)
# Calculate precision and recall for each class
true_classes_binary = label_binarize(true_classes, classes=range(NUM_CLASSES))
precision, recall, _ = precision_recall_curve(
true_classes_binary.ravel(), np.array(final_predicted_scores_rotation).ravel()
)
# Plot precision-recall curve
plt.figure(figsize=(10, 6))
plt.plot(recall, precision)
plt.title("Precision-Recall Curve")
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.show()
predict_image_with_tta("data/test/Task 1/", model, preprocess, tta_transforms)
|