File size: 7,469 Bytes
97dcf92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import matplotlib.pyplot as plt
from torch.optim.lr_scheduler import CosineAnnealingLR
import torch
import torch.nn as nn
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
from data_loader import load_data, load_test_data
from configs import *
import numpy as np

torch.cuda.empty_cache()

# 


class MLP(nn.Module):
    def __init__(self, num_classes, num_models):
        super(MLP, self).__init__()
        self.layers = nn.Sequential(
            nn.Linear(num_classes * num_models, 1024),
            nn.LayerNorm(1024),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Dropout(0.8),
            nn.Linear(1024, 2048),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Dropout(0.5),
            nn.Linear(2048, 2048),
            nn.LeakyReLU(negative_slope=0.01, inplace=True),
            nn.Dropout(0.5),
            nn.Linear(2048, num_classes),
        )

    def forward(self, x):
        x = x.view(x.size(0), -1)
        x = self.layers(x)
        return x


def mlp_meta(num_classes, num_models):
    model = MLP(num_classes, num_models)
    return model


# Hyperparameters
input_dim = 3 * 224 * 224  # Modify this based on your input size
hidden_dim = 256
output_dim = NUM_CLASSES

# Create the data loaders using your data_loader functions50
train_loader, val_loader = load_data(COMBINED_DATA_DIR + "1", preprocess, BATCH_SIZE)
test_loader = load_test_data("data/test/Task 1", preprocess, BATCH_SIZE)

model_paths = [
    "output/checkpoints/bestsqueezenetSE3.pth",
    "output/checkpoints/EfficientNetB3WithDropout.pth",
    "output/checkpoints/MobileNetV2WithDropout2.pth",
]


# Define a function to load pretrained models
def load_pretrained_model(path, model):
    model.load_state_dict(torch.load(path))
    return model.to(DEVICE)


def rand_bbox(size, lam):
    W = size[2]
    H = size[3]
    cut_rat = np.sqrt(1.0 - lam)
    cut_w = np.int_(W * cut_rat)
    cut_h = np.int_(H * cut_rat)

    # uniform
    cx = np.random.randint(W)
    cy = np.random.randint(H)

    bbx1 = np.clip(cx - cut_w // 2, 0, W)
    bby1 = np.clip(cy - cut_h // 2, 0, H)
    bbx2 = np.clip(cx + cut_w // 2, 0, W)
    bby2 = np.clip(cy + cut_h // 2, 0, H)

    return bbx1, bby1, bbx2, bby2


def cutmix_data(input, target, alpha=1.0):
    if alpha > 0:
        lam = np.random.beta(alpha, alpha)
    else:
        lam = 1

    batch_size = input.size()[0]
    index = torch.randperm(batch_size)
    rand_index = torch.randperm(input.size()[0])

    bbx1, bby1, bbx2, bby2 = rand_bbox(input.size(), lam)
    input[:, :, bbx1:bbx2, bby1:bby2] = input[rand_index, :, bbx1:bbx2, bby1:bby2]

    lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (input.size()[-1] * input.size()[-2]))
    targets_a = target
    targets_b = target[rand_index]

    return input, targets_a, targets_b, lam


def cutmix_criterion(criterion, outputs, targets_a, targets_b, lam):
    return lam * criterion(outputs, targets_a) + (1 - lam) * criterion(
        outputs, targets_b
    )


# Load pretrained models
model1 = load_pretrained_model(
    model_paths[0], SqueezeNet1_0WithSE(num_classes=NUM_CLASSES)
).to(DEVICE)
model2 = load_pretrained_model(
    model_paths[1], EfficientNetB3WithDropout(num_classes=NUM_CLASSES)
).to(DEVICE)
model3 = load_pretrained_model(
    model_paths[2], MobileNetV2WithDropout(num_classes=NUM_CLASSES)
).to(DEVICE)

models = [model1, model2, model3]

# Create the meta learner
meta_learner_model = mlp_meta(NUM_CLASSES, len(models)).to(DEVICE)
meta_optimizer = torch.optim.Adam(meta_learner_model.parameters(), lr=0.001)
meta_loss_fn = torch.nn.CrossEntropyLoss()

# Define the Cosine Annealing Learning Rate Scheduler
scheduler = CosineAnnealingLR(
    meta_optimizer, T_max=700
)  # T_max is the number of epochs for the cosine annealing.

# Define loss function and optimizer for the meta learner
criterion = nn.CrossEntropyLoss().to(DEVICE)

# Record learning rate
lr_hist = []

# Training loop
num_epochs = 160
for epoch in range(num_epochs):
    print("[Epoch: {}]".format(epoch + 1))
    print("Total number of batches: {}".format(len(train_loader)))
    for batch_idx, data in enumerate(train_loader, 0):
        print("Batch: {}".format(batch_idx + 1))
        inputs, labels = data
        inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
        inputs, targets_a, targets_b, lam = cutmix_data(inputs, labels, alpha=1)

        # Forward pass through the three pretrained models
        features1 = model1(inputs)
        features2 = model2(inputs)
        features3 = model3(inputs)

        # Stack the features from the three models
        stacked_features = torch.cat((features1, features2, features3), dim=1).to(
            DEVICE
        )

        # Forward pass through the meta learner
        meta_output = meta_learner_model(stacked_features)

        # Compute the loss
        loss = cutmix_criterion(criterion, meta_output, targets_a, targets_b, lam)

        # Compute the accuracy
        _, predicted = torch.max(meta_output, 1)
        total = labels.size(0)
        correct = (predicted == labels).sum().item()

        # Backpropagation and optimization
        meta_optimizer.zero_grad()
        loss.backward()
        meta_optimizer.step()

        lr_hist.append(meta_optimizer.param_groups[0]["lr"])

        scheduler.step()

    print("Train Loss: {}".format(loss.item()))
    print("Train Accuracy: {}%".format(100 * correct / total))

    # Validation
    meta_learner_model.eval()
    correct = 0
    total = 0
    val_loss = 0
    with torch.no_grad():
        for data in val_loader:
            inputs, labels = data
            inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
            features1 = model1(inputs)
            features2 = model2(inputs)
            features3 = model3(inputs)
            stacked_features = torch.cat((features1, features2, features3), dim=1).to(
                DEVICE
            )
            outputs = meta_learner_model(stacked_features)
            loss = criterion(outputs, labels)  # Use the validation loss
            val_loss += loss.item()
            _, predicted = torch.max(outputs, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    print(
        "Validation Loss: {}".format(val_loss / len(val_loader))
    )  # Calculate the average loss
    print("Validation Accuracy: {}%".format(100 * correct / total))


print("Finished Training")

# Test the ensemble
print("Testing the ensemble")
meta_learner_model.eval()
correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        inputs, labels = data
        inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
        features1 = model1(inputs)
        features2 = model2(inputs)
        features3 = model3(inputs)
        stacked_features = torch.cat((features1, features2, features3), dim=1)
        outputs = meta_learner_model(stacked_features)
        _, predicted = torch.max(outputs, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(
    "Accuracy of the ensemble network on the test images: {}%".format(
        100 * correct / total
    )
)


# Plot the learning rate history

plt.plot(lr_hist)
plt.xlabel("Iterations")
plt.ylabel("Learning Rate")
plt.title("Learning Rate History")
plt.show()


# Save the model
torch.save(meta_learner_model.state_dict(), "output/checkpoints/ensemble.pth")