Spaces:
Runtime error
Runtime error
File size: 7,862 Bytes
97dcf92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import optuna
from optuna.trial import TrialState
import torch
import torch.nn as nn
import torch.optim as optim
from configs import *
import data_loader
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import pygad
import pygad.torchga
torch.cuda.empty_cache()
model = MODEL.to(DEVICE)
EPOCHS = 10
N_TRIALS = 20
TIMEOUT = 1800
EARLY_STOPPING_PATIENCE = (
4 # Number of epochs with no improvement to trigger early stopping
)
NUM_GENERATIONS = 10
SOL_PER_POP = 10 # Number of solutions in the population
NUM_GENES = 2
NUM_PARENTS_MATING = 4
# Create a TensorBoard writer
writer = SummaryWriter(log_dir="output/tensorboard/tuning")
# Function to create or modify data loaders with the specified batch size
def create_data_loaders(batch_size):
train_loader, valid_loader = data_loader.load_data(
COMBINED_DATA_DIR + "1",
preprocess,
batch_size=batch_size,
)
return train_loader, valid_loader
# Objective function for optimization
def objective(trial):
global data_inputs, data_outputs
batch_size = trial.suggest_categorical("batch_size", [16, 32, 64])
train_loader, valid_loader = create_data_loaders(batch_size)
lr = trial.suggest_float("lr", 1e-5, 1e-3, log=True)
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
gamma = trial.suggest_float("gamma", 0.1, 0.9, step=0.1)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=EPOCHS)
past_trials = 0 # Number of trials already completed
# Print best hyperparameters:
if past_trials > 0:
print("\nBest Hyperparameters:")
print(f"{study.best_trial.params}")
print(f"\n[INFO] Trial: {trial.number}")
print(f"Batch Size: {batch_size}")
print(f"Learning Rate: {lr}")
print(f"Gamma: {gamma}\n")
early_stopping_counter = 0
best_accuracy = 0.0
for epoch in range(EPOCHS):
model.train()
for batch_idx, (data, target) in enumerate(train_loader, 0):
data, target = data.to(DEVICE), target.to(DEVICE)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
scheduler.step()
model.eval()
correct = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(valid_loader, 0):
data, target = data.to(DEVICE), target.to(DEVICE)
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
accuracy = correct / len(valid_loader.dataset)
# Log hyperparameters and accuracy to TensorBoard
writer.add_scalar("Accuracy", accuracy, trial.number)
writer.add_hparams(
{"batch_size": batch_size, "lr": lr, "gamma": gamma},
{"accuracy": accuracy},
)
print(f"[EPOCH {epoch + 1}] Accuracy: {accuracy:.4f}")
trial.report(accuracy, epoch)
if accuracy > best_accuracy:
best_accuracy = accuracy
early_stopping_counter = 0
else:
early_stopping_counter += 1
# Early stopping check
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
print(f"\nEarly stopping at epoch {epoch + 1}")
break
if trial.number > 10 and trial.params["lr"] < 1e-3 and best_accuracy < 0.7:
return float("inf")
past_trials += 1
return best_accuracy
# Custom genetic algorithm
def run_genetic_algorithm(fitness_func):
# Initial population
population = np.random.rand(SOL_PER_POP, NUM_GENES) # Random initialization
# Run for a fixed number of generations
for generation in range(NUM_GENERATIONS):
# Calculate fitness for each solution in the population
fitness = np.array(
[fitness_func(solution, idx) for idx, solution in enumerate(population)]
)
# Get the index of the best solution
best_idx = np.argmax(fitness)
best_solution = population[best_idx]
best_fitness = fitness[best_idx]
# Print the best solution and fitness for this generation
print(f"Generation {generation + 1}:")
print("Best Solution:")
print("Learning Rate = {lr}".format(lr=best_solution[0]))
print("Gamma = {gamma}".format(gamma=best_solution[1]))
print("Best Fitness = {fitness}".format(fitness=best_fitness))
# Perform selection and crossover to create the next generation
population = selection_and_crossover(population, fitness)
# Selection and crossover logic
def selection_and_crossover(population, fitness):
# Perform tournament selection
parents = []
for _ in range(SOL_PER_POP):
tournament_idxs = np.random.choice(range(SOL_PER_POP), NUM_PARENTS_MATING)
tournament_fitness = [fitness[idx] for idx in tournament_idxs]
selected_parent_idx = tournament_idxs[np.argmax(tournament_fitness)]
parents.append(population[selected_parent_idx])
# Perform single-point crossover
offspring = []
for i in range(0, SOL_PER_POP, 2):
if i + 1 < SOL_PER_POP:
crossover_point = np.random.randint(0, NUM_GENES)
offspring.extend(
[
np.concatenate(
(parents[i][:crossover_point], parents[i + 1][crossover_point:])
)
]
)
offspring.extend(
[
np.concatenate(
(parents[i + 1][:crossover_point], parents[i][crossover_point:])
)
]
)
return np.array(offspring)
# Modify callback function to log best accuracy
def callback_generation(ga_instance):
global study
# Fetch the parameters of the best solution
solution, solution_fitness, _ = ga_instance.best_solution()
best_learning_rate, best_gamma = solution
# Report the best accuracy to Optuna study
study.set_user_attr("best_accuracy", solution_fitness)
# Print generation number and best fitness
print(
"Generation = {generation}".format(generation=ga_instance.generations_completed)
)
print("Best Fitness = {fitness}".format(fitness=solution_fitness))
print("Best Learning Rate = {lr}".format(lr=best_learning_rate))
print("Best Gamma = {gamma}".format(gamma=best_gamma))
if __name__ == "__main__":
global study
pruner = optuna.pruners.HyperbandPruner()
study = optuna.create_study(
direction="maximize",
pruner=pruner,
study_name="hyperparameter_tuning",
)
# Define data_inputs and data_outputs
# You need to populate these with your own data
# Define the loss function
loss_function = nn.CrossEntropyLoss()
def fitness_func(solution, sol_idx):
global data_inputs, data_outputs, model, loss_function
learning_rate, momentum = solution
# Update optimizer with the current learning rate and momentum
optimizer = torch.optim.SGD(
model.parameters(), lr=learning_rate, momentum=momentum
)
# Load the model weights
model_weights_dict = pygad.torchga.model_weights_as_dict(
model=model, weights_vector=solution
)
model.load_state_dict(model_weights_dict)
# Forward pass
predictions = model(data_inputs)
# Calculate cross-entropy loss
loss = loss_function(predictions, data_outputs)
# Higher fitness for lower loss
solution_fitness = 1.0 / (loss.detach().numpy() + 1e-8)
return solution_fitness
# Run the custom genetic algorithm
run_genetic_algorithm(fitness_func)
|