Spaces:
Runtime error
Runtime error
File size: 1,694 Bytes
e6f2a04 9d7b040 e6f2a04 9d7b040 e6f2a04 9d7b040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import os
import torch
import torch.nn as nn
from torchvision import transforms
from PIL import Image
from models import *
from torchmetrics import ConfusionMatrix
import matplotlib.pyplot as plt
from configs import *
# Load your model (change this according to your model definition)
MODEL.load_state_dict(
torch.load(MODEL_SAVE_PATH, map_location=DEVICE)
) # Load the model on the same device
MODEL.eval()
MODEL = MODEL.to(DEVICE)
MODEL.eval()
torch.set_grad_enabled(False)
def predict_image(image_path, model=MODEL, transform=preprocess):
classes = CLASSES
print("---------------------------")
print("Image path:", image_path)
image = Image.open(image_path).convert("RGB")
image = transform(image).unsqueeze(0)
image = image.to(DEVICE)
output = model(image)
# Softmax algorithm
probabilities = torch.softmax(output, dim=1)[0] * 100
# Sort the classes by probabilities in descending order
sorted_classes = sorted(
zip(classes, probabilities), key=lambda x: x[1], reverse=True
)
# Report the prediction for each class
print("Probabilities for each class:")
for class_label, class_prob in sorted_classes:
class_prob = class_prob.item().__round__(2)
print(f"{class_label}: {class_prob}%")
# Get the predicted class
predicted_class = sorted_classes[0][0] # Most probable class
predicted_label = classes.index(predicted_class)
# Report the prediction
print("Predicted class:", predicted_label)
print("Predicted label:", predicted_class)
print("---------------------------")
return predicted_label, sorted_classes
predict_image("data/test/Task 1/Healthy/01.png")
|