Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# This software may be used and distributed according to the terms of the GNU General Public License version 3. | |
from typing import Optional, Tuple | |
from dataclasses import dataclass | |
import math | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import clip | |
from timm.models.vision_transformer import Block | |
import fairscale.nn.model_parallel.initialize as fs_init | |
from fairscale.nn.model_parallel.layers import ( | |
ParallelEmbedding, | |
RowParallelLinear, | |
ColumnParallelLinear, | |
) | |
class ModelArgs: | |
dim: int = 512 | |
n_layers: int = 8 | |
n_heads: int = 8 | |
vocab_size: int = -1 # defined later by tokenizer | |
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 | |
norm_eps: float = 1e-5 | |
max_batch_size: int = 32 | |
max_seq_len: int = 2048 | |
adapter_len: int = 10 | |
adapter_layer: int = 30 | |
cap_adapter_len: int = 10 | |
cap_adapter_layer: int = 30 | |
cap_vision_model: str = "ViT-L/14" | |
cap_vision_dim: int = 512 | |
cap_vision_block: int = 2 | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-6): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
t = torch.arange(end, device=freqs.device) # type: ignore | |
freqs = torch.outer(t, freqs).float() # type: ignore | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 | |
return freqs_cis | |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
ndim = x.ndim | |
assert 0 <= 1 < ndim | |
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) | |
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
return freqs_cis.view(*shape) | |
def apply_rotary_emb( | |
xq: torch.Tensor, | |
xk: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) | |
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) | |
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) | |
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) | |
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) | |
return xq_out.type_as(xq), xk_out.type_as(xk) | |
class Attention(nn.Module): | |
def __init__(self, args: ModelArgs): | |
super().__init__() | |
self.n_local_heads = args.n_heads // fs_init.get_model_parallel_world_size() | |
self.head_dim = args.dim // args.n_heads | |
self.wq = ColumnParallelLinear( | |
args.dim, | |
args.n_heads * self.head_dim, | |
bias=False, | |
gather_output=False, | |
init_method=lambda x: x, | |
) | |
self.wk = ColumnParallelLinear( | |
args.dim, | |
args.n_heads * self.head_dim, | |
bias=False, | |
gather_output=False, | |
init_method=lambda x: x, | |
) | |
self.wv = ColumnParallelLinear( | |
args.dim, | |
args.n_heads * self.head_dim, | |
bias=False, | |
gather_output=False, | |
init_method=lambda x: x, | |
) | |
self.wo = RowParallelLinear( | |
args.n_heads * self.head_dim, | |
args.dim, | |
bias=False, | |
input_is_parallel=True, | |
init_method=lambda x: x, | |
) | |
self.cache_k = torch.zeros( | |
(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim) | |
).cuda() | |
self.cache_v = torch.zeros( | |
(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim) | |
).cuda() | |
self.gate = torch.nn.Parameter(torch.zeros(1)) | |
self.cap_gate = torch.nn.Parameter(torch.zeros(1, self.n_local_heads, 1, 1)) | |
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None, mode='instruct'): | |
if mode == 'instruct': | |
return self.forward_instruct(x, start_pos, freqs_cis, mask, adapter) | |
elif mode == 'caption': | |
return self.forward_caption(x, start_pos, freqs_cis, mask, adapter) | |
def forward_instruct(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None): | |
bsz, seqlen, _ = x.shape | |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) | |
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) | |
self.cache_k = self.cache_k.to(xq) | |
self.cache_v = self.cache_v.to(xq) | |
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk | |
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv | |
keys = self.cache_k[:bsz, : start_pos + seqlen] | |
values = self.cache_v[:bsz, : start_pos + seqlen] | |
if adapter is not None: | |
adapter_len = adapter.shape[1] | |
adapter_k = self.wk(adapter).view(1, adapter_len, self.n_local_heads, self.head_dim).repeat(bsz, 1, 1, 1) | |
adapter_v = self.wv(adapter).view(1, adapter_len, self.n_local_heads, self.head_dim).repeat(bsz, 1, 1, 1) | |
adapter_k = adapter_k.transpose(1, 2) | |
adapter_v = adapter_v.transpose(1, 2) | |
xq = xq.transpose(1, 2) | |
keys = keys.transpose(1, 2) | |
values = values.transpose(1, 2) | |
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if mask is not None: | |
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen) | |
scores = F.softmax(scores.float(), dim=-1).type_as(xq) | |
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim) | |
if adapter is not None: | |
adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim) | |
adapter_scores = self.gate * F.softmax(adapter_scores.float(), dim=-1).type_as(xq) | |
output = output + torch.matmul(adapter_scores, adapter_v) | |
output = output.transpose( | |
1, 2 | |
).contiguous().view(bsz, seqlen, -1) | |
return self.wo(output) | |
def forward_caption(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None): | |
bsz, seqlen, _ = x.shape | |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) | |
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) | |
self.cache_k = self.cache_k.to(xq) | |
self.cache_v = self.cache_v.to(xq) | |
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk | |
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv | |
keys = self.cache_k[:bsz, : start_pos + seqlen] | |
values = self.cache_v[:bsz, : start_pos + seqlen] | |
if adapter is not None: | |
adapter_len = adapter.shape[1] | |
adapter_k = self.wk(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim) | |
adapter_v = self.wv(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim) | |
adapter_k = adapter_k.transpose(1, 2) | |
adapter_v = adapter_v.transpose(1, 2) | |
xq = xq.transpose(1, 2) | |
keys = keys.transpose(1, 2) | |
values = values.transpose(1, 2) | |
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if mask is not None: | |
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen) | |
scores = F.softmax(scores.float(), dim=-1).type_as(xq) | |
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim) | |
if adapter is not None: | |
adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim) | |
adapter_scores = self.cap_gate.tanh() * F.softmax(adapter_scores.float(), dim=-1).type_as(xq) | |
output = output + torch.matmul(adapter_scores, adapter_v) | |
output = output.transpose( | |
1, 2 | |
).contiguous().view(bsz, seqlen, -1) | |
return self.wo(output) | |
class FeedForward(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
hidden_dim: int, | |
multiple_of: int, | |
): | |
super().__init__() | |
hidden_dim = int(2 * hidden_dim / 3) | |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
self.w1 = ColumnParallelLinear( | |
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x | |
) | |
self.w2 = RowParallelLinear( | |
hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x | |
) | |
self.w3 = ColumnParallelLinear( | |
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x | |
) | |
def forward(self, x): | |
return self.w2(F.silu(self.w1(x)) * self.w3(x)) | |
class TransformerBlock(nn.Module): | |
def __init__(self, layer_id: int, args: ModelArgs): | |
super().__init__() | |
self.n_heads = args.n_heads | |
self.dim = args.dim | |
self.head_dim = args.dim // args.n_heads | |
self.attention = Attention(args) | |
self.feed_forward = FeedForward( | |
dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of | |
) | |
self.layer_id = layer_id | |
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) | |
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) | |
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None, mode='instruct'): | |
h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask, adapter, mode=mode) | |
out = h + self.feed_forward.forward(self.ffn_norm(h)) | |
return out | |
class Transformer(nn.Module): | |
def __init__(self, params: ModelArgs): | |
super().__init__() | |
self.params = params | |
self.vocab_size = params.vocab_size | |
self.n_layers = params.n_layers | |
self.tok_embeddings = ParallelEmbedding( | |
params.vocab_size, params.dim, init_method=lambda x: x | |
) | |
self.layers = torch.nn.ModuleList() | |
for layer_id in range(params.n_layers): | |
self.layers.append(TransformerBlock(layer_id, params)) | |
self.norm = RMSNorm(params.dim, eps=params.norm_eps) | |
self.output = ColumnParallelLinear( | |
params.dim, params.vocab_size, bias=False, init_method=lambda x: x | |
) | |
self.freqs_cis = precompute_freqs_cis( | |
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2 | |
) | |
# Note: this is only a preview of multimodal LLaMA-Adapter | |
# and requires more efforts to decouple LLaMA-Adapter from LLaMA. | |
# instruct model | |
self.adapter_query = nn.Embedding(params.adapter_len * params.adapter_layer, params.dim) | |
self.adapter_len = params.adapter_len | |
self.adapter_layer = params.adapter_layer | |
# caption model | |
self.cap_adapter_query = nn.Embedding(params.cap_adapter_len * params.cap_adapter_layer, params.dim) | |
self.cap_adapter_len = params.cap_adapter_len | |
self.cap_adapter_layer = params.cap_adapter_layer | |
def forward(self, tokens: torch.Tensor, start_pos: int, visual_tokens: torch.Tensor = None, mode: str = 'instruct'): | |
if mode == 'instruct': | |
return self.forward_instruct(tokens, start_pos, mode) | |
elif mode == 'caption': | |
return self.forward_caption(tokens, start_pos, visual_tokens, mode) | |
def forward_instruct(self, tokens: torch.Tensor, start_pos: int, mode=None): | |
_bsz, seqlen = tokens.shape | |
h = self.tok_embeddings(tokens) | |
self.freqs_cis = self.freqs_cis.to(h.device) | |
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] | |
adapter = self.adapter_query.weight.reshape(self.params.adapter_layer, self.params.adapter_len, self.params.dim).unsqueeze(1) | |
mask = None | |
if seqlen > 1: | |
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device) | |
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h) | |
for layer in self.layers[: -1 * self.params.adapter_layer]: | |
h = layer(h, start_pos, freqs_cis, mask) | |
layer_index = 0 | |
for layer in self.layers[-1 * self.params.adapter_layer:]: | |
h = layer(h, start_pos, freqs_cis, mask, adapter[layer_index], mode=mode) | |
layer_index = layer_index + 1 | |
h = self.norm(h) | |
output = self.output(h[:, -1, :]) # only compute last logits | |
return output.float() | |
def forward_caption(self, tokens: torch.Tensor, start_pos: int, visual_tokens: torch.Tensor = None, mode=None): | |
_bsz, seqlen = tokens.shape | |
h = self.tok_embeddings(tokens) | |
self.freqs_cis = self.freqs_cis.to(h.device) | |
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] | |
adapter = self.cap_adapter_query.weight.reshape(self.params.cap_adapter_layer, self.params.cap_adapter_len, self.params.dim).unsqueeze(1) | |
mask = None | |
if seqlen > 1: | |
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device) | |
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h) | |
for layer in self.layers[: -1 * self.params.cap_adapter_layer]: | |
h = layer(h, start_pos, freqs_cis, mask) | |
layer_index = 0 | |
for layer in self.layers[-1 * self.params.cap_adapter_layer:]: | |
adapter_per_layer = adapter[layer_index] | |
if visual_tokens is not None: | |
adapter_per_layer = adapter_per_layer + visual_tokens | |
h = layer(h, start_pos, freqs_cis, mask, adapter_per_layer, mode=mode) | |
layer_index = layer_index + 1 | |
h = self.norm(h) | |
output = self.output(h[:, -1, :]) # only compute last logits | |
return output.float() | |
class VisionModel(nn.Module): | |
def __init__(self, params: ModelArgs): | |
super().__init__() | |
self.params = params | |
self.clip, self.clip_transform = clip.load(params.cap_vision_model) | |
self.clip.float() | |
for param in self.clip.parameters(): | |
param.requires_grad = False | |
self.clip_proj = nn.Linear(self.clip.visual.output_dim, params.cap_vision_dim) | |
self.clip_proj_norm = nn.LayerNorm(params.cap_vision_dim) | |
self.visual_query = nn.Embedding(params.cap_adapter_len, params.cap_vision_dim) | |
self.visual_blocks = nn.ModuleList([ | |
Block(params.cap_vision_dim, 16, 4, qkv_bias=True, qk_scale=None, norm_layer=nn.LayerNorm) | |
for i in range(params.cap_vision_block)]) | |
self.visual_proj = nn.Linear(params.cap_vision_dim, params.dim) | |
self.visual_proj_norm = nn.LayerNorm(params.dim) | |
def clip_encode_image(self, x): | |
x = self.clip.visual.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
x = torch.cat([self.clip.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
x = x + self.clip.visual.positional_embedding.to(x.dtype) | |
x = self.clip.visual.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.clip.visual.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.clip.visual.ln_post(x[:, :, :]) | |
if self.clip.visual.proj is not None: | |
x = x @ self.clip.visual.proj | |
return x | |
def forward(self, imgs): | |
x = [self.clip_transform(img) for img in imgs] | |
x = torch.stack(x, dim=0).to(self.visual_query.weight.device) | |
_bsz = x.shape[0] | |
visual_feats = self.clip_encode_image(x).half() | |
visual_feats = self.clip_proj_norm(self.clip_proj(visual_feats)) | |
visual_query = self.visual_query.weight.unsqueeze(0).repeat(_bsz, 1, 1) | |
visual_query = torch.cat([visual_query, visual_feats], dim=1) | |
for block in self.visual_blocks: | |
visual_query = block(visual_query) | |
visual_query = visual_query[:, :self.params.cap_adapter_len, :] | |
visual_query = self.visual_proj(visual_query) | |
visual_query = self.visual_proj_norm(visual_query) | |
return visual_query |