import gradio as gr import numpy as np import time def fake_diffusion(input_img, steps): # for i in range(steps): # time.sleep(1) # image = np.random.random((600, 600, 3)) # yield image image = np.ones((1000,1000,3), np.uint8) image[:] = [255, 124, 0] # yield input_img return image demo = gr.Interface(fake_diffusion, inputs=[gr.Image(type="filepath"), gr.Slider(1, 10, 3)], outputs="image") if __name__ == "__main__": demo.launch()