Spaces:
Runtime error
Runtime error
Commit
·
00a31fe
1
Parent(s):
5194cc9
plt5 support
Browse files- app.py +21 -0
- models.py +40 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from models import MODELS, PIPELINES
|
4 |
+
|
5 |
+
|
6 |
+
def predict(text: str, model_name: str) -> str:
|
7 |
+
return {"text": PIPELINES[model_name](text)}
|
8 |
+
|
9 |
+
|
10 |
+
with gr.Blocks(title="CLARIN-PL Dialogue System Modules") as demo:
|
11 |
+
gr.Markdown("Dialogue State Tracking Modules")
|
12 |
+
for model_name in MODELS:
|
13 |
+
with gr.Row():
|
14 |
+
gr.Markdown(f"## {model_name}")
|
15 |
+
model_name_component = gr.Textbox(value=model_name, visible=False)
|
16 |
+
with gr.Row():
|
17 |
+
text_input = gr.Textbox(label="Input Text", value=MODELS[model_name]["default_input"])
|
18 |
+
gr.Interface(fn=predict, inputs=[text_input, model_name_component], outputs="text")
|
19 |
+
|
20 |
+
demo.queue(concurrency_count=3)
|
21 |
+
demo.launch()
|
models.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Any, Dict
|
3 |
+
|
4 |
+
from transformers import (Pipeline, T5ForConditionalGeneration, T5Tokenizer,
|
5 |
+
pipeline)
|
6 |
+
|
7 |
+
auth_token = os.environ.get("CLARIN_KNEXT")
|
8 |
+
|
9 |
+
DEFAULT_INPUTS: Dict[str, str] = {
|
10 |
+
"polish": (
|
11 |
+
"[U] Chciałbym zarezerwować stolik na 4 osoby na piątek o godzinie 18.30. "
|
12 |
+
"[Dziedzina] Restauracje: Popularna usługa wyszukiwania i rezerwacji restauracji "
|
13 |
+
"[Atrybut] Czas: Wstępny czas rezerwacji restauracji"
|
14 |
+
),
|
15 |
+
"english": (
|
16 |
+
"[U] I want to book a table for 4 people on Friday, 6.30 pm. "
|
17 |
+
"[Domain] Restaurants: A popular restaurant search and reservation service "
|
18 |
+
"[Slot] Time: Tentative time of restaurant reservation"
|
19 |
+
),
|
20 |
+
}
|
21 |
+
|
22 |
+
MODELS: Dict[str, Dict[str, Any]] = {
|
23 |
+
"plt5-small": {
|
24 |
+
"model": T5ForConditionalGeneration.from_pretrained("clarin-knext/plt5-small-dst", use_auth_token=auth_token),
|
25 |
+
"tokenizer": T5Tokenizer.from_pretrained("clarin-knext/plt5-small-dst", use_auth_token=auth_token),
|
26 |
+
"default_input": DEFAULT_INPUTS["polish"],
|
27 |
+
},
|
28 |
+
"plt5-base": {
|
29 |
+
"model": T5ForConditionalGeneration.from_pretrained("clarin-knext/plt5-base-dst", use_auth_token=auth_token),
|
30 |
+
"tokenizer": T5Tokenizer.from_pretrained("clarin-knext/plt5-base-dst", use_auth_token=auth_token),
|
31 |
+
"default_input": DEFAULT_INPUTS["polish"],
|
32 |
+
},
|
33 |
+
}
|
34 |
+
|
35 |
+
PIPELINES: Dict[str, Pipeline] = {
|
36 |
+
model_name: pipeline(
|
37 |
+
"text2text-generation", model=MODELS[model_name]["model"], tokenizer=MODELS[model_name]["tokenizer"]
|
38 |
+
)
|
39 |
+
for model_name in MODELS
|
40 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
sentencepiece
|