import gradio as gr from transformers import pipeline # from huggingface_hub import InferenceClient # from transformers import pipeline # modelName = "chenluuli/test-text-vis" # pipeline = pipeline(task="image-classification", model="chenluuli/test-text-vis") # def predict(input_img): # predictions = pipeline(input_img) # return input_img, {p["label"]: p["score"] for p in predictions} # gradio_app = gr.Interface( # predict, # inputs="text", # outputs="text", # title="demo", # ) # if __name__ == "__main__": # gradio_app.launch() token = "" # todo 支持外部传入 def initClient(): # Initialize client for a specific model client = InferenceClient( model="prompthero/openjourney-v4", #base_url=..., #api_key=..., ) return client def greet(input): modelName = "chenluuli/test-text-vis" text2text_generator = pipeline("text-generation", model="Qwen/Qwen2.5-0.5B-Instruct", torch_dtype="auto", device_map="auto") prompt = "##你是一个可视化专家,通过我提供的信息,推荐合理的图表配置##请根据这些信息,返回合理的图表类型 >>我输入的数据如下:" messages = [{ "role": "user", "content": prompt+input, }] response = text2text_generator( messages, max_length=512 ) print(response, response[0]['generated_text']) return response[0]['generated_text'] demo = gr.Interface(fn=greet, inputs="text", outputs="text") demo.launch() # title = "demo" # description = "Gradio Demo for custom demo" # # examples = [ # # ["The tower is 324 metres (1,063 ft) tall,"], # # ["The Moon's orbit around Earth has"], # # ["The smooth Borealis basin in the Northern Hemisphere covers 40%"], # # ] # gr.Interface.load( # "huggingface/chenluuli/test-text-vis", # inputs=gr.Textbox(lines=5, label="Input Text"), # outputs="text", # #title=title, # #description=description, # # article=article, # # examples=examples, # #enable_queue=True, # ).launch()