File size: 10,750 Bytes
bd97c62
3bbce21
bd97c62
e668dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0cb68e
e668dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0cb68e
b07346d
e668dd5
 
 
b07346d
e668dd5
 
 
 
 
b07346d
e668dd5
 
 
 
 
e0cb68e
 
b07346d
e0cb68e
 
 
 
552cad7
e668dd5
 
 
 
 
 
 
e0cb68e
e668dd5
e0cb68e
 
 
e668dd5
b07346d
e668dd5
 
 
 
 
 
b07346d
 
 
e668dd5
 
 
b07346d
e668dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b07346d
e668dd5
 
 
 
 
 
 
 
e0cb68e
 
 
 
 
 
 
 
 
 
 
 
e668dd5
b07346d
 
 
 
 
e668dd5
 
b07346d
 
 
e668dd5
 
 
 
 
3bbce21
 
 
 
a3d3a25
6657a5d
3bbce21
e668dd5
552cad7
e668dd5
 
 
 
 
 
 
 
 
 
 
3bbce21
6657a5d
 
3bbce21
 
 
a3d3a25
3bbce21
 
 
 
e0cb68e
 
 
3bbce21
 
 
a3d3a25
06f2eaf
e0cb68e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import gradio as gr
import jax

import numpy as np

import jax
import jax.numpy as jnp

from PIL import Image

from diffusers import (
    FlaxAutoencoderKL,
    FlaxDPMSolverMultistepScheduler,
    FlaxUNet2DConditionModel,
)

from transformers import ByT5Tokenizer, FlaxT5ForConditionalGeneration


def get_inference_lambda(seed):
    tokenizer = ByT5Tokenizer()

    language_model = FlaxT5ForConditionalGeneration.from_pretrained(
        "google/byt5-base",
        dtype=jnp.float32,
    )
    text_encoder = language_model.encode
    text_encoder_params = language_model.params
    max_length = 1024
    tokenized_negative_prompt = tokenizer(
        "", padding="max_length", max_length=max_length, return_tensors="np"
    ).input_ids
    negative_prompt_text_encoder_hidden_states = text_encoder(
        tokenized_negative_prompt,
        params=text_encoder_params,
        train=False,
    )[0]

    scheduler = FlaxDPMSolverMultistepScheduler.from_config(
        config={
            "_diffusers_version": "0.16.0",
            "beta_end": 0.012,
            "beta_schedule": "scaled_linear",
            "beta_start": 0.00085,
            "clip_sample": False,
            "num_train_timesteps": 1000,
            "prediction_type": "v_prediction",
            "set_alpha_to_one": False,
            "skip_prk_steps": True,
            "steps_offset": 1,
            "trained_betas": None,
        }
    )
    timesteps = 20
    guidance_scale = jnp.array([7.5], dtype=jnp.bfloat16)

    unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
        "character-aware-diffusion/charred",
        dtype=jnp.bfloat16,
    )

    vae, vae_params = FlaxAutoencoderKL.from_pretrained(
        "flax/stable-diffusion-2-1",
        subfolder="vae",
        dtype=jnp.bfloat16,
    )
    vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)

    image_width = image_height = 256

    # Generating latent shape
    latent_shape = (
        negative_prompt_text_encoder_hidden_states.shape[0],  # is th
        unet.in_channels,
        image_width // vae_scale_factor,
        image_height // vae_scale_factor,
    )

    def __tokenize_prompt(prompt: str):
        return tokenizer(
            text=prompt,
            max_length=1024,
            padding="max_length",
            truncation=True,
            return_tensors="jax",
        ).input_ids

    def __convert_image(image):
        # create PIL image from JAX tensor converted to numpy
        return Image.fromarray(np.asarray(image), mode="RGB")

    def __get_context(tokenized_prompt: jnp.array):
        # Get the text embedding
        text_encoder_hidden_states = text_encoder(
            tokenized_prompt,
            params=text_encoder_params,
            train=False,
        )[0]

        # context = empty negative prompt embedding + prompt embedding
        return jnp.concatenate(
            [negative_prompt_text_encoder_hidden_states, text_encoder_hidden_states]
        )

    def __predict_image(context: jnp.array):
        def ___timestep(step, step_args):
            latents, scheduler_state = step_args

            t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]

            # For classifier-free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            latent_input = jnp.concatenate([latents] * 2)

            timestep = jnp.broadcast_to(t, latent_input.shape[0])

            scaled_latent_input = scheduler.scale_model_input(
                scheduler_state, latent_input, t
            )

            # predict the noise residual
            unet_prediction_sample = unet.apply(
                {"params": unet_params},
                jnp.array(scaled_latent_input),
                jnp.array(timestep, dtype=jnp.int32),
                context,
            ).sample

            # perform guidance
            unet_prediction_sample_uncond, unet_prediction_text = jnp.split(
                unet_prediction_sample, 2, axis=0
            )
            guided_unet_prediction_sample = (
                unet_prediction_sample_uncond
                + guidance_scale
                * (unet_prediction_text - unet_prediction_sample_uncond)
            )

            # compute the previous noisy sample x_t -> x_t-1
            latents, scheduler_state = scheduler.step(
                scheduler_state, guided_unet_prediction_sample, t, latents
            ).to_tuple()

            return latents, scheduler_state

        # initialize scheduler state
        initial_scheduler_state = scheduler.set_timesteps(
            scheduler.create_state(), num_inference_steps=timesteps, shape=latent_shape
        )

        # initialize latents
        initial_latents = (
            jax.random.normal(
                jax.random.PRNGKey(seed), shape=latent_shape, dtype=jnp.bfloat16
            )
            * initial_scheduler_state.init_noise_sigma
        )

        final_latents, _ = jax.lax.fori_loop(
            0, timesteps, ___timestep, (initial_latents, initial_scheduler_state)
        )

        vae_output = vae.apply(
            {"params": vae_params},
            1 / vae.config.scaling_factor * final_latents,
            method=vae.decode,
        ).sample

        # return 8 bit RGB image (width, height, rgb)
        return (
            ((vae_output / 2 + 0.5).transpose(0, 2, 3, 1).clip(0, 1) * 255)
            .round()
            .astype(jnp.uint8)[0]
        )

    jax_jit_compiled_accel_predict_image = jax.jit(__predict_image)

    jax_jit_compiled_cpu_get_context = jax.jit(
        __get_context, device=jax.devices(backend="cpu")[0]
    )

    return lambda prompt: __convert_image(
        jax_jit_compiled_accel_predict_image(
            jax_jit_compiled_cpu_get_context(__tokenize_prompt(prompt))
        )
    )


generate_image_for_prompt = get_inference_lambda(87)


with gr.Blocks(theme="gradio/soft") as demo:

    gr.Markdown("# Character-Aware Stable Diffusion (CHARRED)")

    with gr.Tab("Journal"):
        gr.Markdown(
            """
            ## On How Four Crazy Fellows Embarked on Training a JAX U-Net from Scratch in Five Days and Almost Died in the End

            Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris vitae varius libero. Nullam laoreet eget sapien quis tristique. Cras odio odio, consequat sed cursus quis, dignissim hendrerit ligula. Curabitur non lorem tellus. Nam bibendum malesuada mi sed faucibus. Sed euismod enim metus, sit amet venenatis elit elementum vel. Duis nec rhoncus tellus, rhoncus auctor justo. Proin id gravida dolor. Sed nulla lectus, finibus non fringilla ac, fermentum in sapien. Cras lobortis est augue, vel posuere justo pretium vitae. Aliquam lorem dolor, condimentum et finibus rutrum, rhoncus eget nunc.

            In varius eu nulla non tempor. Maecenas laoreet scelerisque ipsum, eu placerat enim luctus sed. In malesuada, nibh finibus finibus sollicitudin, lacus massa pulvinar sem, vel venenatis nibh sem eget lorem. Cras at augue magna. Nullam elementum porta turpis, et tristique sapien placerat vel. Etiam eu lorem malesuada, ornare leo a, commodo erat. Mauris a velit vulputate, placerat lectus vel, varius lorem. Sed volutpat porttitor venenatisLorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris vitae varius libero. Nullam laoreet eget sapien quis tristique. Cras odio odio, consequat sed cursus quis, dignissim hendrerit ligula. Curabitur non lorem tellus. Nam bibendum malesuada mi sed faucibus. Sed euismod enim metus, sit amet venenatis elit elementum vel. Duis nec rhoncus tellus, rhoncus auctor justo. Proin id gravida dolor. Sed nulla lectus, finibus non fringilla ac, fermentum in sapien. Cras lobortis est augue, vel posuere justo pretium vitae. Aliquam lorem dolor, condimentum et finibus rutrum, rhoncus eget nunc.

            Sed pellentesque gravida consectetur. Mauris molestie nunc quis lacinia egestas. Curabitur aliquam varius quam, nec venenatis leo efficitur a. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Ut fermentum gravida mauris, at blandit diam suscipit dapibus. Maecenas ac condimentum justo. Pellentesque aliquet risus vitae massa molestie iaculis. Quisque at libero tincidunt dui ornare vulputate. Sed tristique dolor lacinia pellentesque maximus. Donec bibendum tempus orci, eu gravida metus vehicula sit amet. Donec quis sodales neque, id consequat elit.

            Sed molestie diam a massa sodales porta. Sed et ex vitae felis blandit consectetur porttitor in lectus. Interdum et malesuada fames ac ante ipsum primis in faucibus. Praesent est mi, lacinia ut egestas sed, dapibus sed augue. Sed scelerisque est a ex porta suscipit. Curabitur eleifend massa vitae suscipit finibus. Cras lobortis pellentesque est. Pellentesque semper justo nibh, vitae convallis lectus ultrices sed. Nunc auctor dignissim pretium. Praesent orci justo, posuere a diam at, tincidunt viverra leo. Quisque sit amet dignissim erat, id varius massa. Phasellus fringilla vestibulum elit, id eleifend erat hendrerit ut.

            Duis scelerisque sit amet est at iaculis. Suspendisse sed ipsum vitae massa placerat semper. Pellentesque vitae sapien tristique, congue ligula sed, dapibus nunc. Suspendisse sed maximus neque, a lobortis risus. Nam lorem nisi, commodo a neque ut, volutpat porttitor ipsum. Quisque in tortor blandit, ultrices leo eget, venenatis nisl. Vestibulum ultricies sapien at sapien tincidunt vehicula vel in lacus. Sed ultricies mattis quam ac aliquet. Nulla a ullamcorper urna. Duis lacus ligula, auctor in orci sed, hendrerit maximus lectus. Nam a enim at nibh aliquam rhoncus. Pellentesque nulla justo, varius eget molestie sit amet, ultricies id tortor.
            """
        )

    with gr.Tab("☢️ DEMO ☢️"):
        gr.Markdown(
            "## This is a demo of the CHARRED character-aware stable diffusion model for you to enjoy at your own leisure, risk and peril"
        )
        prompt_input_charr = gr.Textbox(label="Prompt")
        charred_output = gr.Image(label="Output Image")
        submit_btn = gr.Button(value="Submit")
        charred_inputs = [prompt_input_charr]
        submit_btn.click(
            fn=generate_image_for_prompt,
            inputs=charred_inputs,
            outputs=[charred_output],
        )
    # examples = [["postage stamp from california", "low quality", "charr_output.png", "charr_output.png" ]]
    # gr.Examples(fn = infer_sd, inputs = ["text", "text", "image", "image"], examples=examples, cache_examples=True)

demo.queue(concurrency_count=1)
demo.launch(debug=True, show_error=True)