File size: 6,606 Bytes
93c029f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch; torch.manual_seed(0)
import torch.nn as nn
import torch.nn.functional as F
import torch.utils
import torch.distributions
import matplotlib.pyplot as plt; plt.rcParams['figure.dpi'] = 200
from src.cocktails.representation_learning.simple_model import SimpleNet

device = 'cuda' if torch.cuda.is_available() else 'cpu'

def get_activation(activation):
    if activation == 'tanh':
        activ = F.tanh
    elif activation == 'relu':
        activ = F.relu
    elif activation == 'mish':
        activ = F.mish
    elif activation == 'sigmoid':
        activ = F.sigmoid
    elif activation == 'leakyrelu':
        activ = F.leaky_relu
    elif activation == 'exp':
        activ = torch.exp
    else:
        raise ValueError
    return activ

class IngredientEncoder(nn.Module):
    def __init__(self, input_dim, deepset_latent_dim, hidden_dims, activation, dropout):
        super(IngredientEncoder, self).__init__()
        self.linears = nn.ModuleList()
        self.dropouts = nn.ModuleList()
        dims = [input_dim] + hidden_dims + [deepset_latent_dim]
        for d_in, d_out in zip(dims[:-1], dims[1:]):
            self.linears.append(nn.Linear(d_in, d_out))
            self.dropouts.append(nn.Dropout(dropout))
        self.activation = get_activation(activation)
        self.n_layers = len(self.linears)
        self.layer_range = range(self.n_layers)

    def forward(self, x):
        for i_layer, layer, dropout in zip(self.layer_range, self.linears, self.dropouts):
            x = layer(x)
            if i_layer != self.n_layers - 1:
                x = self.activation(dropout(x))
        return x  # do not use dropout on last layer?

class DeepsetCocktailEncoder(nn.Module):
    def __init__(self, input_dim, deepset_latent_dim, hidden_dims_ing, activation,
                 hidden_dims_cocktail, latent_dim, aggregation, dropout):
        super(DeepsetCocktailEncoder, self).__init__()
        self.input_dim = input_dim  # dimension of ingredient representation + quantity
        self.ingredient_encoder = IngredientEncoder(input_dim, deepset_latent_dim, hidden_dims_ing, activation, dropout)  # encode each ingredient separately
        self.deepset_latent_dim = deepset_latent_dim  # dimension of the deepset aggregation
        self.aggregation = aggregation
        self.latent_dim = latent_dim
        # post aggregation network
        self.linears = nn.ModuleList()
        self.dropouts = nn.ModuleList()
        dims = [deepset_latent_dim] + hidden_dims_cocktail
        for d_in, d_out in zip(dims[:-1], dims[1:]):
            self.linears.append(nn.Linear(d_in, d_out))
            self.dropouts.append(nn.Dropout(dropout))
        self.FC_mean  = nn.Linear(hidden_dims_cocktail[-1], latent_dim)
        self.FC_logvar   = nn.Linear(hidden_dims_cocktail[-1], latent_dim)
        self.softplus = nn.Softplus()

        self.activation = get_activation(activation)
        self.n_layers = len(self.linears)
        self.layer_range = range(self.n_layers)

    def forward(self, nb_ingredients, x):

        # reshape x in (batch size * nb ingredients, dim_ing_rep)
        batch_size = x.shape[0]
        all_ingredients = []
        for i in range(batch_size):
            for j in range(nb_ingredients[i]):
                all_ingredients.append(x[i, self.input_dim * j: self.input_dim * (j + 1)].reshape(1, -1))
        x = torch.cat(all_ingredients, dim=0)
        # encode ingredients in parallel
        ingredients_encodings = self.ingredient_encoder(x)
        assert ingredients_encodings.shape == (torch.sum(nb_ingredients), self.deepset_latent_dim)

        # aggregate
        x = []
        index_first = 0
        for i in range(batch_size):
            index_last = index_first + nb_ingredients[i]
            # aggregate
            if self.aggregation == 'sum':
                x.append(torch.sum(ingredients_encodings[index_first:index_last], dim=0).reshape(1, -1))
            elif self.aggregation == 'mean':
                x.append(torch.mean(ingredients_encodings[index_first:index_last], dim=0).reshape(1, -1))
            else:
                raise ValueError
            index_first = index_last
        x = torch.cat(x, dim=0)
        assert x.shape[0] == batch_size

        for i_layer, layer, dropout in zip(self.layer_range, self.linears, self.dropouts):
            x = self.activation(dropout(layer(x)))
        mean = self.FC_mean(x)
        logvar = self.FC_logvar(x)
        return mean, logvar


class MultiHeadModel(nn.Module):
    def __init__(self, encoder, auxiliaries_dict, activation, hidden_dims_decoder):
        super(MultiHeadModel, self).__init__()
        self.encoder = encoder
        self.latent_dim = self.encoder.output_dim
        self.auxiliaries_str = []
        self.auxiliaries = nn.ModuleList()
        for aux_str in sorted(auxiliaries_dict.keys()):
            if aux_str == 'taste_reps':
                self.taste_reps_decoder = SimpleNet(input_dim=self.latent_dim, hidden_dims=[], output_dim=auxiliaries_dict[aux_str]['dim_output'],
                                                    activation=activation, dropout=0.0, final_activ=auxiliaries_dict[aux_str]['final_activ'])
            else:
                self.auxiliaries_str.append(aux_str)
                if aux_str == 'ingredients_quantities':
                    hd = hidden_dims_decoder
                else:
                    hd = []
                self.auxiliaries.append(SimpleNet(input_dim=self.latent_dim, hidden_dims=hd, output_dim=auxiliaries_dict[aux_str]['dim_output'],
                                                  activation=activation, dropout=0.0, final_activ=auxiliaries_dict[aux_str]['final_activ']))

    def get_all_auxiliaries(self, x):
        return [aux(x) for aux in self.auxiliaries]

    def get_auxiliary(self, z, aux_str):
        if aux_str == 'taste_reps':
            return self.taste_reps_decoder(z)
        else:
            index = self.auxiliaries_str.index(aux_str)
            return self.auxiliaries[index](z)

    def forward(self, x, aux_str=None):
        z = self.encoder(x)
        if aux_str is not None:
            return z, self.get_auxiliary(z, aux_str), [aux_str]
        else:
            return z, self.get_all_auxiliaries(z), self.auxiliaries_str

def get_multihead_model(input_dim, activation, hidden_dims_cocktail, latent_dim, dropout, auxiliaries_dict, hidden_dims_decoder):
    encoder = SimpleNet(input_dim, hidden_dims_cocktail, latent_dim, activation, dropout)
    model = MultiHeadModel(encoder, auxiliaries_dict, activation, hidden_dims_decoder)
    return model