import gradio as gr from transformers import pipeline # Initialize the inference client with the model ID client = pipeline(model="bragour/Camel-7b-chat") def respond( message, max_tokens, temperature, top_p, ): # Generate the response from the API result = client( message, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, ) response = result[0]['generated_text'] return response # Define the Gradio interface demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(lines=2, placeholder="Type your message here...", label="Your Message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], outputs=gr.Textbox(label="Response"), ) if __name__ ==