bluuebunny commited on
Commit
27e7139
·
1 Parent(s): b0ba4c4

fixed output and added a copy button

Browse files
Files changed (1) hide show
  1. app.py +10 -3
app.py CHANGED
@@ -2,6 +2,7 @@
2
  import gradio as gr # For interface
3
  from sentence_transformers import SentenceTransformer # For embedding the text
4
  import torch # For gpu
 
5
 
6
  # Make the app device agnostic
7
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
@@ -16,13 +17,19 @@ def predict(input_text):
16
  # Calculate embeddings by calling model.encode(), specifying the device
17
  embeddings = model.encode(input_text, device=device)
18
 
19
- return embeddings
 
 
 
 
 
 
20
 
21
  # Gradio app interface
22
  gradio_app = gr.Interface(
23
  predict,
24
- inputs="text",
25
- outputs=gr.Textbox(lines=30, placeholder="Scrollable array output"),
26
  title="Text to Vector Generator",
27
  description="Input a text and get its vector representation using an embedding model (mixedbread-ai/mxbai-embed-large-v1)."
28
  )
 
2
  import gradio as gr # For interface
3
  from sentence_transformers import SentenceTransformer # For embedding the text
4
  import torch # For gpu
5
+ import numpy as np
6
 
7
  # Make the app device agnostic
8
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
 
17
  # Calculate embeddings by calling model.encode(), specifying the device
18
  embeddings = model.encode(input_text, device=device)
19
 
20
+ # Set the print options to avoid truncation and use fixed-point notation
21
+ np.set_printoptions(threshold=np.inf, precision=8, suppress=True, floatmode='fixed')
22
+
23
+ # Convert the array to a string for display
24
+ embeddings_str = np.array2string(embeddings, separator=',')
25
+
26
+ return embeddings_str
27
 
28
  # Gradio app interface
29
  gradio_app = gr.Interface(
30
  predict,
31
+ inputs=gr.Textbox(placeholder="Insert Text"),
32
+ outputs=gr.Textbox(show_copy_button=True, placeholder='Vector of dimensions 1024'),
33
  title="Text to Vector Generator",
34
  description="Input a text and get its vector representation using an embedding model (mixedbread-ai/mxbai-embed-large-v1)."
35
  )