Update app.py
Browse files
app.py
CHANGED
@@ -1,199 +1,154 @@
|
|
1 |
import streamlit as st
|
2 |
-
import openai
|
3 |
import requests
|
4 |
from bs4 import BeautifulSoup
|
5 |
-
from urllib.parse import urljoin, urlparse
|
6 |
import os
|
7 |
import re
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
while to_visit and len(visited) < max_pages:
|
26 |
-
current_url = to_visit.pop(0)
|
27 |
-
if current_url in visited:
|
28 |
-
continue
|
29 |
-
|
30 |
try:
|
31 |
-
response = requests.get(
|
32 |
-
response.
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
for link in links:
|
48 |
-
full_url = urljoin(current_url, link["href"])
|
49 |
-
if url in full_url and full_url not in visited:
|
50 |
-
to_visit.append(full_url)
|
51 |
-
|
52 |
-
except Exception:
|
53 |
continue
|
54 |
-
|
55 |
-
return
|
56 |
-
|
57 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
"""
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
def infer_business_info_from_url(url):
|
65 |
-
"""
|
66 |
-
Infer business details from the domain name.
|
67 |
-
"""
|
68 |
-
domain_name = urlparse(url).netloc
|
69 |
-
inferred_info = openai.ChatCompletion.create(
|
70 |
-
model="gpt-4",
|
71 |
-
messages=[
|
72 |
-
{
|
73 |
-
"role": "system",
|
74 |
-
"content": "You are a business analyst. Based on domain names, generate likely information about a business, including its industry, target audience, and goals."
|
75 |
-
},
|
76 |
-
{
|
77 |
-
"role": "user",
|
78 |
-
"content": f"The domain is {domain_name}. What can you infer about this business?"
|
79 |
-
}
|
80 |
-
]
|
81 |
)
|
82 |
-
return
|
83 |
|
84 |
-
def
|
85 |
-
"""
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
4. **SEO Strategies**: Detailed recommendations for improving search rankings, including tools and methods.
|
108 |
-
5. **Content Marketing Plan**: How to leverage the provided content topics to achieve the stated goals.
|
109 |
-
6. **Social Media Strategies**: Platforms, posting frequency, campaign ideas, and location-specific tactics.
|
110 |
-
7. **Advertising Campaigns**: Platforms, budget allocation, target audience details, and creative strategies.
|
111 |
-
8. **Execution Timeline**: A quarterly breakdown of actionable steps with measurable KPIs.
|
112 |
-
|
113 |
-
Ensure the recommendations are detailed, actionable, and tailored to the business's specific goals, budget, and location.
|
114 |
-
Avoid generic suggestions and provide unique, high-value insights.
|
115 |
"""
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
121 |
)
|
122 |
-
return response[
|
123 |
|
124 |
-
#
|
125 |
-
initial_messages = [{
|
126 |
-
"role": "system",
|
127 |
-
"content": """You are a world-class marketing strategist trained by Neil Patel, David Ogilvy, and Seth Godin.
|
128 |
-
Your task is to create highly customized marketing plans based on user input. Incorporate any business location
|
129 |
-
or target areas explicitly mentioned in the website content or user-provided details into the recommendations.
|
130 |
-
Go beyond generic suggestions, and include:
|
131 |
-
- Specific, long-tail keywords to target.
|
132 |
-
- Detailed content ideas, including blogs, videos, and social media campaigns.
|
133 |
-
- Unique strategies tailored to the business's goals, location, and target audience.
|
134 |
-
- Innovative advertising campaigns and emerging platform recommendations.
|
135 |
-
- Video marketing as a critical strategy across all platforms.
|
136 |
-
Ensure every suggestion is actionable and includes measurable KPIs."""
|
137 |
-
}]
|
138 |
-
|
139 |
-
# Streamlit setup
|
140 |
st.set_page_config(layout="wide")
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
)
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
#
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
#
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
#
|
197 |
-
|
198 |
-
|
199 |
-
st.markdown(st.session_state["reply"])
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
|
|
4 |
import os
|
5 |
import re
|
6 |
+
from deepseek_api import DeepSeek # Replace with actual Deepseek SDK
|
7 |
+
|
8 |
+
# Configure Deepseek API
|
9 |
+
DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY")
|
10 |
+
ds = DeepSeek(api_key=DEEPSEEK_API_KEY)
|
11 |
+
|
12 |
+
def search_neighborhood_data(query):
|
13 |
+
"""Search for neighborhood information across various sources"""
|
14 |
+
sources = {
|
15 |
+
"Niche": f"https://www.niche.com/places-to-live/search/{query}",
|
16 |
+
"AreaVibes": f"https://www.areavibes.com/search/?query={query}",
|
17 |
+
"Walkscore": f"https://www.walkscore.com/score/{query}"
|
18 |
+
}
|
19 |
+
|
20 |
+
results = {}
|
21 |
+
for source, url in sources.items():
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
try:
|
23 |
+
response = requests.get(url, timeout=10)
|
24 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
25 |
+
|
26 |
+
if source == "Niche":
|
27 |
+
listings = soup.find_all('div', class_='search-results__list__item')
|
28 |
+
results[source] = [{
|
29 |
+
'name': item.find('h2').text.strip(),
|
30 |
+
'details': item.find('div', class_='search-result-tagline').text.strip(),
|
31 |
+
'score': item.find('div', class_='search-result-grade').text.strip()
|
32 |
+
} for item in listings[:3]]
|
33 |
+
|
34 |
+
elif source == "AreaVibes":
|
35 |
+
# Similar parsing for other sources
|
36 |
+
...
|
37 |
+
|
38 |
+
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
continue
|
40 |
+
|
41 |
+
return results
|
42 |
+
|
43 |
+
def analyze_preferences(preferences):
|
44 |
+
"""Use Deepseek to analyze user preferences and generate search parameters"""
|
45 |
+
prompt = f"""
|
46 |
+
User preferences: {preferences}
|
47 |
+
Generate search parameters for neighborhood hunting considering:
|
48 |
+
- Key demographic factors
|
49 |
+
- Important amenities
|
50 |
+
- Commute considerations
|
51 |
+
- Lifestyle priorities
|
52 |
+
- Budget constraints
|
53 |
"""
|
54 |
+
|
55 |
+
response = ds.generate(
|
56 |
+
model="neighborhood-matcher",
|
57 |
+
prompt=prompt,
|
58 |
+
max_tokens=500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
)
|
60 |
+
return response['choices'][0]['text']
|
61 |
|
62 |
+
def generate_recommendations(criteria, locations):
|
63 |
+
"""Generate neighborhood recommendations with Deepseek's analysis"""
|
64 |
+
base_prompt = f"""
|
65 |
+
Based on these verified neighborhood data:
|
66 |
+
{locations}
|
67 |
+
|
68 |
+
And user criteria:
|
69 |
+
{criteria}
|
70 |
+
|
71 |
+
Create 5 recommendations including:
|
72 |
+
1. Best overall match
|
73 |
+
2. Best value option
|
74 |
+
3. Best for families
|
75 |
+
4. Best for young professionals
|
76 |
+
5. 'Outside the Box' option (creative suggestion)
|
77 |
+
|
78 |
+
For each include:
|
79 |
+
- Key strengths
|
80 |
+
- Potential drawbacks
|
81 |
+
- Notable amenities
|
82 |
+
- Average home prices
|
83 |
+
- Commute times
|
84 |
+
- Unique character
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
"""
|
86 |
|
87 |
+
response = ds.generate(
|
88 |
+
model="neighborhood-matcher",
|
89 |
+
prompt=base_prompt,
|
90 |
+
max_tokens=1500,
|
91 |
+
temperature=0.7
|
92 |
)
|
93 |
+
return response['choices'][0]['text']
|
94 |
|
95 |
+
# Streamlit UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
st.set_page_config(layout="wide")
|
97 |
+
st.title("🏡 Neighborhood Matchmaker")
|
98 |
+
|
99 |
+
with st.expander("🔍 Your Lifestyle Preferences"):
|
100 |
+
col1, col2 = st.columns(2)
|
101 |
+
with col1:
|
102 |
+
budget = st.slider("Monthly Housing Budget ($)", 1000, 10000, 3000)
|
103 |
+
commute = st.selectbox("Max Commute Time", ["15 mins", "30 mins", "45 mins", "1 hour"])
|
104 |
+
amenities = st.multiselect("Must-Have Amenities", [
|
105 |
+
"Good Schools", "Parks", "Public Transport",
|
106 |
+
"Nightlife", "Shopping Centers", "Healthcare"
|
107 |
+
])
|
108 |
+
|
109 |
+
with col2:
|
110 |
+
lifestyle = st.selectbox("Primary Lifestyle", [
|
111 |
+
"Family-Friendly", "Urban Professional", "Retirement",
|
112 |
+
"Student", "Remote Worker", "Outdoor Enthusiast"
|
113 |
+
])
|
114 |
+
safety = st.slider("Safety Priority (1-10)", 1, 10, 8)
|
115 |
+
extra = st.text_input("Special Requirements", placeholder="e.g., Dog parks, historic district")
|
116 |
+
|
117 |
+
# Generate recommendations
|
118 |
+
if st.button("Find My Perfect Neighborhood"):
|
119 |
+
with st.spinner("Analyzing preferences and searching neighborhoods..."):
|
120 |
+
# Collect preferences
|
121 |
+
preferences = {
|
122 |
+
"budget": budget,
|
123 |
+
"commute": commute,
|
124 |
+
"amenities": amenities,
|
125 |
+
"lifestyle": lifestyle,
|
126 |
+
"safety": safety,
|
127 |
+
"extra": extra
|
128 |
+
}
|
129 |
+
|
130 |
+
# Analyze preferences with AI
|
131 |
+
search_params = analyze_preferences(preferences)
|
132 |
+
|
133 |
+
# Search for matching locations
|
134 |
+
location_data = search_neighborhood_data(search_params)
|
135 |
+
|
136 |
+
# Generate final recommendations
|
137 |
+
recommendations = generate_recommendations(preferences, location_data)
|
138 |
+
|
139 |
+
# Display results
|
140 |
+
st.subheader("Your Custom Neighborhood Recommendations")
|
141 |
+
st.markdown(recommendations)
|
142 |
+
|
143 |
+
# Always include an "outside the box" suggestion
|
144 |
+
st.subheader("🚀 Outside the Box Option")
|
145 |
+
st.markdown("""**Emerging Neighborhood - Innovation District**
|
146 |
+
*Why we suggest it:*
|
147 |
+
- Up-and-coming tech hub with new amenities
|
148 |
+
- Lower prices before expected growth
|
149 |
+
- Community development initiatives
|
150 |
+
*Consider if:* You want to get in early on a growing area""")
|
151 |
+
|
152 |
+
# Disclaimer
|
153 |
+
st.markdown("---")
|
154 |
+
st.caption("Recommendations are AI-generated and should be verified with local experts.")
|
|