import torch import torch.nn as nn class SimPool(nn.Module): def __init__(self, dim, num_heads=1, qkv_bias=False, qk_scale=None, gamma=None, use_beta=False): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.norm_patches = nn.LayerNorm(dim, eps=1e-6) self.wq = nn.Linear(dim, dim, bias=qkv_bias) self.wk = nn.Linear(dim, dim, bias=qkv_bias) if gamma is not None: self.gamma = torch.tensor([gamma]) if use_beta: self.beta = nn.Parameter(torch.tensor([0.0])) self.eps = torch.tensor([1e-6]) self.gamma = gamma self.use_beta = use_beta def prepare_input(self, x): if len(x.shape) == 3: # Transformer # Input tensor dimensions: # x: (B, N, d), where B is batch size, N are patch tokens, d is depth (channels) B, N, d = x.shape gap_cls = x.mean(-2) # (B, N, d) -> (B, d) gap_cls = gap_cls.unsqueeze(1) # (B, d) -> (B, 1, d) return gap_cls, x if len(x.shape) == 4: # CNN # Input tensor dimensions: # x: (B, d, H, W), where B is batch size, d is depth (channels), H is height, and W is width B, d, H, W = x.shape gap_cls = x.mean([-2, -1]) # (B, d, H, W) -> (B, d) x = x.reshape(B, d, H*W).permute(0, 2, 1) # (B, d, H, W) -> (B, d, H*W) -> (B, H*W, d) gap_cls = gap_cls.unsqueeze(1) # (B, d) -> (B, 1, d) return gap_cls, x else: raise ValueError(f"Unsupported number of dimensions in input tensor: {len(x.shape)}") def forward(self, x): # Prepare input tensor and perform GAP as initialization gap_cls, x = self.prepare_input(x) # Prepare queries (q), keys (k), and values (v) q, k, v = gap_cls, self.norm_patches(x), self.norm_patches(x) # Extract dimensions after normalization Bq, Nq, dq = q.shape Bk, Nk, dk = k.shape Bv, Nv, dv = v.shape # Check dimension consistency across batches and channels assert Bq == Bk == Bv assert dq == dk == dv # Apply linear transformation for queries and keys then reshape qq = self.wq(q).reshape(Bq, Nq, self.num_heads, dq // self.num_heads).permute(0, 2, 1, 3) # (Bq, Nq, dq) -> (B, num_heads, Nq, dq/num_heads) kk = self.wk(k).reshape(Bk, Nk, self.num_heads, dk // self.num_heads).permute(0, 2, 1, 3) # (Bk, Nk, dk) -> (B, num_heads, Nk, dk/num_heads) vv = v.reshape(Bv, Nv, self.num_heads, dv // self.num_heads).permute(0, 2, 1, 3) # (Bv, Nv, dv) -> (B, num_heads, Nv, dv/num_heads) # Compute attention scores attn = (qq @ kk.transpose(-2, -1)) * self.scale # Apply softmax for normalization attn = attn.softmax(dim=-1) # If gamma scaling is used if self.gamma is not None: # Apply gamma scaling on values and compute the weighted sum using attention scores x = torch.pow(attn @ torch.pow((vv - vv.min() + self.eps), self.gamma), 1/self.gamma) # (B, num_heads, Nv, dv/num_heads) -> (B, 1, 1, d) # If use_beta, add a learnable translation if self.use_beta: x = x + self.beta else: # Compute the weighted sum using attention scores x = (attn @ vv).transpose(1, 2).reshape(Bq, Nq, dq) return attn