Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
class SimPool(nn.Module): | |
def __init__(self, dim, num_heads=1, qkv_bias=False, qk_scale=None, gamma=None, use_beta=False): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.norm_patches = nn.LayerNorm(dim, eps=1e-6) | |
self.wq = nn.Linear(dim, dim, bias=qkv_bias) | |
self.wk = nn.Linear(dim, dim, bias=qkv_bias) | |
if gamma is not None: | |
self.gamma = torch.tensor([gamma]) | |
if use_beta: | |
self.beta = nn.Parameter(torch.tensor([0.0])) | |
self.eps = torch.tensor([1e-6]) | |
self.gamma = gamma | |
self.use_beta = use_beta | |
def prepare_input(self, x): | |
if len(x.shape) == 3: # Transformer | |
# Input tensor dimensions: | |
# x: (B, N, d), where B is batch size, N are patch tokens, d is depth (channels) | |
B, N, d = x.shape | |
gap_cls = x.mean(-2) # (B, N, d) -> (B, d) | |
gap_cls = gap_cls.unsqueeze(1) # (B, d) -> (B, 1, d) | |
return gap_cls, x | |
if len(x.shape) == 4: # CNN | |
# Input tensor dimensions: | |
# x: (B, d, H, W), where B is batch size, d is depth (channels), H is height, and W is width | |
B, d, H, W = x.shape | |
gap_cls = x.mean([-2, -1]) # (B, d, H, W) -> (B, d) | |
x = x.reshape(B, d, H*W).permute(0, 2, 1) # (B, d, H, W) -> (B, d, H*W) -> (B, H*W, d) | |
gap_cls = gap_cls.unsqueeze(1) # (B, d) -> (B, 1, d) | |
return gap_cls, x | |
else: | |
raise ValueError(f"Unsupported number of dimensions in input tensor: {len(x.shape)}") | |
def forward(self, x): | |
# Prepare input tensor and perform GAP as initialization | |
gap_cls, x = self.prepare_input(x) | |
# Prepare queries (q), keys (k), and values (v) | |
q, k, v = gap_cls, self.norm_patches(x), self.norm_patches(x) | |
# Extract dimensions after normalization | |
Bq, Nq, dq = q.shape | |
Bk, Nk, dk = k.shape | |
Bv, Nv, dv = v.shape | |
# Check dimension consistency across batches and channels | |
assert Bq == Bk == Bv | |
assert dq == dk == dv | |
# Apply linear transformation for queries and keys then reshape | |
qq = self.wq(q).reshape(Bq, Nq, self.num_heads, dq // self.num_heads).permute(0, 2, 1, 3) # (Bq, Nq, dq) -> (B, num_heads, Nq, dq/num_heads) | |
kk = self.wk(k).reshape(Bk, Nk, self.num_heads, dk // self.num_heads).permute(0, 2, 1, 3) # (Bk, Nk, dk) -> (B, num_heads, Nk, dk/num_heads) | |
vv = v.reshape(Bv, Nv, self.num_heads, dv // self.num_heads).permute(0, 2, 1, 3) # (Bv, Nv, dv) -> (B, num_heads, Nv, dv/num_heads) | |
# Compute attention scores | |
attn = (qq @ kk.transpose(-2, -1)) * self.scale | |
# Apply softmax for normalization | |
attn = attn.softmax(dim=-1) | |
# If gamma scaling is used | |
if self.gamma is not None: | |
# Apply gamma scaling on values and compute the weighted sum using attention scores | |
x = torch.pow(attn @ torch.pow((vv - vv.min() + self.eps), self.gamma), 1/self.gamma) # (B, num_heads, Nv, dv/num_heads) -> (B, 1, 1, d) | |
# If use_beta, add a learnable translation | |
if self.use_beta: | |
x = x + self.beta | |
else: | |
# Compute the weighted sum using attention scores | |
x = (attn @ vv).transpose(1, 2).reshape(Bq, Nq, dq) | |
return attn |