Bill Psomas
update demo
151915d
raw
history blame
2.66 kB
import os
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import PIL
from PIL import Image
import torch
import torchvision
from torchvision import datasets, transforms
import vision_transformer as vits
arch = "vit_small"
mode = "simpool"
gamma = None
patch_size = 16
input_size = 224
num_classes = 0
checkpoint = "checkpoints/vits_dino_simpool_no_gamma_ep100.pth"
checkpoint_key = "teacher"
cm = plt.get_cmap('viridis')
attn_map_size = 224
width_display = 290
height_display = 290
example_dir = "examples/"
example_list = [[example_dir + example] for example in os.listdir(example_dir)]
#example_list = "n03017168_54500.JPEG"
# Load model
model = vits.__dict__[arch](
mode=mode,
gamma=gamma,
patch_size=patch_size,
num_classes=num_classes,
)
state_dict = torch.load(checkpoint)
state_dict = state_dict[checkpoint_key]
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
state_dict = {k: v for k, v in state_dict.items() if k in model.state_dict()}
msg = model.load_state_dict(state_dict, strict=True)
model.eval()
# Define transformations
data_transforms = transforms.Compose([
transforms.Resize((input_size, input_size), interpolation=3),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
def get_attention_map(img):
x = data_transforms(img)
attn = model.get_simpool_attention(x[None, :, :, :])
attn = attn.reshape(1, 1, input_size//patch_size, input_size//patch_size)
attn = attn/attn.sum()
attn = attn.squeeze()
attn = (attn-(attn).min())/((attn).max()-(attn).min())
attn = torch.threshold(attn, 0.1, 0)
attn_img = Image.fromarray(np.uint8(cm(attn.detach().numpy())*255)).convert('RGB')
attn_img = attn_img.resize((attn_map_size, attn_map_size), resample=Image.NEAREST)
return attn_img
attention_interface = gr.Interface(
fn=get_attention_map,
inputs=[gr.Image(type="pil", label="Input Image")],
outputs=gr.Image(type="pil", label="SimPool Attention Map", width=width_display, height=height_display),
examples=example_list,
title="Explore the Attention Maps of SimPool🔍",
description="Upload or use one of the selected images to explore the intricate focus areas of a ViT-S model with SimPool, trained on ImageNet-1k, under supervision."
)
demo = gr.TabbedInterface([attention_interface],
["Visualize Attention Maps"], title="SimPool Attention Map Visualizer 🌌")
if __name__ == "__main__":
demo.launch(share=True)