Spaces:
Running
Running
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
from datasets import load_dataset | |
import os | |
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # SET the GPUs you want to use | |
import csv | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
print(device) | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=30, | |
batch_size=16, | |
return_timestamps=True, | |
return_language=True, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
# Specify the folder containing the mp3 files | |
mp3_folder = "./eng_audio/" | |
# Get a list of all the mp3 files in the folder | |
mp3_files = [file for file in os.listdir(mp3_folder) if file.endswith(".mp3")] | |
# mp3_files = ["p2_17.wav"] | |
# Create a CSV file to store the transcripts | |
csv_filename = "transcripts_english.csv" | |
with open(csv_filename, mode='a', newline='', encoding='utf-8') as csv_file: | |
fieldnames = ['File Name', 'Transcript', 'Language'] | |
writer = csv.DictWriter(csv_file, fieldnames=fieldnames) | |
# Write the header to the CSV file | |
# writer.writeheader() | |
# Process each mp3 file and write the results to the CSV file | |
processed_files_counter = 0 | |
for mp3_file in mp3_files: | |
mp3_path = os.path.join(mp3_folder, mp3_file) | |
save_filename = "tmp.wav" | |
cmd = f"ffmpeg -i {mp3_path} -ac 1 -ar 16000 {save_filename} -y -hide_banner -loglevel error" | |
os.system(cmd) | |
mp3_path = save_filename | |
result = pipe(mp3_path,generate_kwargs={"language": "english"}) | |
transcript = result["text"].strip() | |
lang = result["chunks"][0]["language"] | |
processed_files_counter += 1 | |
# Check progress after every 10 files | |
if processed_files_counter % 10 == 0: | |
print(f"{processed_files_counter} files processed.") | |
# Write the file name and transcript to the CSV file | |
writer.writerow({'File Name': mp3_file, 'Transcript': transcript, 'Language': lang}) | |
print(f"Transcripts saved to {csv_filename}") | |