import gradio as gr import numpy as np import matplotlib.pyplot as plt import seaborn as sns from io import BytesIO from PIL import Image from datasets.exceptions import DatasetNotFoundError from src.dataloading import get_leaderboard_datasets from src.similarity import load_data_and_compute_similarities # Set matplotlib backend for non-GUI environments plt.switch_backend('Agg') def create_heatmap(selected_models, selected_dataset, selected_metric): if not selected_models or not selected_dataset: return None # Sort models and get short names similarities = load_data_and_compute_similarities(selected_models, selected_dataset, selected_metric) # Check if similarity matrix contains NaN rows failed_models = [] for i in range(len(similarities)): if np.isnan(similarities[i]).all(): failed_models.append(selected_models[i]) if failed_models: gr.Warning(f"Failed to load data for models: {', '.join(failed_models)}") # Create figure and heatmap using seaborn plt.figure(figsize=(8, 6)) ax = sns.heatmap( similarities, annot=True, fmt=".2f", cmap="viridis", vmin=0, vmax=1, xticklabels=selected_models, yticklabels=selected_models ) # Customize plot plt.title(f"{selected_metric} for {selected_dataset}", fontsize=16) plt.xlabel("Models", fontsize=14) plt.ylabel("Models", fontsize=14) plt.xticks(rotation=45, ha='right') plt.yticks(rotation=0) plt.tight_layout() # Save to buffer buf = BytesIO() plt.savefig(buf, format="png", dpi=100, bbox_inches="tight") plt.close() # Convert to PIL Image buf.seek(0) img = Image.open(buf).convert("RGB") return img def validate_inputs(selected_models, selected_dataset): if not selected_models: raise gr.Error("Please select at least one model!") if not selected_dataset: raise gr.Error("Please select a dataset!") def update_datasets_based_on_models(selected_models, current_dataset): try: available_datasets = get_leaderboard_datasets(selected_models) if selected_models else [] if current_dataset in available_datasets: valid_dataset = current_dataset elif "mmlu_pro" in available_datasets: valid_dataset = "mmlu_pro" else: valid_dataset = None return gr.update( choices=available_datasets, value=valid_dataset ) except DatasetNotFoundError as e: # Extract model name from error message model_name = e.args[0].split("'")[1] model_name = model_name.split("/")[-1].replace("__", "/").replace("_details", "") # Display a shorter warning gr.Warning(f"Data for '{model_name}' is gated or unavailable.") return gr.update(choices=[], value=None) custom_css = """ .image-container img { width: 80% !important; /* Make it 80% of the parent container */ height: auto !important; /* Maintain aspect ratio */ max-width: 800px; /* Optional: Set a max limit */ display: block; margin: auto; /* Center the image */ } """