Spaces:
Runtime error
Runtime error
Commit
·
e7bba1f
1
Parent(s):
0d80bc9
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
8 |
+
|
9 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
10 |
+
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
11 |
+
|
12 |
+
def process_image(image):
|
13 |
+
# prepare image for the model
|
14 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
15 |
+
|
16 |
+
# forward pass
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**encoding)
|
19 |
+
predicted_depth = outputs.predicted_depth
|
20 |
+
|
21 |
+
# interpolate to original size
|
22 |
+
prediction = torch.nn.functional.interpolate(
|
23 |
+
predicted_depth.unsqueeze(1),
|
24 |
+
size=image.size[::-1],
|
25 |
+
mode="bicubic",
|
26 |
+
align_corners=False,
|
27 |
+
).squeeze()
|
28 |
+
output = prediction.cpu().numpy()
|
29 |
+
formatted = (output * 255 / np.max(output)).astype('uint8')
|
30 |
+
img = Image.fromarray(formatted)
|
31 |
+
return img
|
32 |
+
|
33 |
+
return result
|
34 |
+
|
35 |
+
title = "Demo: zero-shot depth estimation with DPT"
|
36 |
+
description = "Demo for Intel's DPT, a Dense Prediction Transformer for state-of-the-art dense prediction tasks such as semantic segmentation and depth estimation."
|
37 |
+
examples =[['cats.jpg']]
|
38 |
+
|
39 |
+
iface = gr.Interface(fn=process_image,
|
40 |
+
inputs=gr.inputs.Image(type="pil"),
|
41 |
+
outputs=gr.outputs.Image(type="pil", label="predicted depth"),
|
42 |
+
title=title,
|
43 |
+
description=description,
|
44 |
+
examples=examples,
|
45 |
+
enable_queue=True)
|
46 |
+
iface.launch(debug=True)
|