Track_Anything / inpainter /base_inpainter.py
Besar
1
314d642
import os
import glob
from PIL import Image
import torch
import yaml
import cv2
import importlib
import numpy as np
from tqdm import tqdm
from inpainter.util.tensor_util import resize_frames, resize_masks
def read_image_from_split(videp_split_path):
# if type:
image = np.asarray([np.asarray(Image.open(path)) for path in videp_split_path])
# else:
# image = cv2.cvtColor(cv2.imread("/tmp/{}/paintedimages/{}/{:08d}.png".format(username, video_state["video_name"], index+ ".png")), cv2.COLOR_BGR2RGB)
return image
def save_image_to_userfolder(video_state, index, image, type:bool):
if type:
image_path = "/tmp/{}/originimages/{}/{:08d}.png".format(video_state["user_name"], video_state["video_name"], index)
else:
image_path = "/tmp/{}/paintedimages/{}/{:08d}.png".format(video_state["user_name"], video_state["video_name"], index)
cv2.imwrite(image_path, image)
return image_path
class BaseInpainter:
def __init__(self, E2FGVI_checkpoint, device) -> None:
"""
E2FGVI_checkpoint: checkpoint of inpainter (version hq, with multi-resolution support)
"""
net = importlib.import_module('inpainter.model.e2fgvi_hq')
self.model = net.InpaintGenerator().to(device)
self.model.load_state_dict(torch.load(E2FGVI_checkpoint, map_location=device))
self.model.eval()
self.device = device
# load configurations
with open("inpainter/config/config.yaml", 'r') as stream:
config = yaml.safe_load(stream)
self.neighbor_stride = config['neighbor_stride']
self.num_ref = config['num_ref']
self.step = config['step']
# sample reference frames from the whole video
def get_ref_index(self, f, neighbor_ids, length):
ref_index = []
if self.num_ref == -1:
for i in range(0, length, self.step):
if i not in neighbor_ids:
ref_index.append(i)
else:
start_idx = max(0, f - self.step * (self.num_ref // 2))
end_idx = min(length, f + self.step * (self.num_ref // 2))
for i in range(start_idx, end_idx + 1, self.step):
if i not in neighbor_ids:
if len(ref_index) > self.num_ref:
break
ref_index.append(i)
return ref_index
def inpaint_efficient(self, frames, masks, num_tcb, num_tca, dilate_radius=15, ratio=1):
"""
Perform Inpainting for video subsets
frames: numpy array, T, H, W, 3
masks: numpy array, T, H, W
num_tcb: constant, number of temporal context before, frames
num_tca: constant, number of temporal context after, frames
dilate_radius: radius when applying dilation on masks
ratio: down-sample ratio
Output:
inpainted_frames: numpy array, T, H, W, 3
"""
assert frames.shape[:3] == masks.shape, 'different size between frames and masks'
assert ratio > 0 and ratio <= 1, 'ratio must in (0, 1]'
# --------------------
# pre-processing
# --------------------
masks = masks.copy()
masks = np.clip(masks, 0, 1)
kernel = cv2.getStructuringElement(2, (dilate_radius, dilate_radius))
masks = np.stack([cv2.dilate(mask, kernel) for mask in masks], 0)
T, H, W = masks.shape
masks = np.expand_dims(masks, axis=3) # expand to T, H, W, 1
# size: (w, h)
if ratio == 1:
size = None
binary_masks = masks
else:
size = [int(W*ratio), int(H*ratio)]
size = [si+1 if si%2>0 else si for si in size] # only consider even values
# shortest side should be larger than 50
if min(size) < 50:
ratio = 50. / min(H, W)
size = [int(W*ratio), int(H*ratio)]
binary_masks = resize_masks(masks, tuple(size))
frames = resize_frames(frames, tuple(size)) # T, H, W, 3
# frames and binary_masks are numpy arrays
h, w = frames.shape[1:3]
video_length = T - (num_tca + num_tcb) # real video length
# convert to tensor
imgs = (torch.from_numpy(frames).permute(0, 3, 1, 2).contiguous().unsqueeze(0).float().div(255)) * 2 - 1
masks = torch.from_numpy(binary_masks).permute(0, 3, 1, 2).contiguous().unsqueeze(0)
imgs, masks = imgs.to(self.device), masks.to(self.device)
comp_frames = [None] * video_length
tcb_imgs = None
tca_imgs = None
tcb_masks = None
tca_masks = None
# --------------------
# end of pre-processing
# --------------------
# separate tc frames/masks from imgs and masks
if num_tcb > 0:
tcb_imgs = imgs[:, :num_tcb]
tcb_masks = masks[:, :num_tcb]
tcb_binary = binary_masks[:num_tcb]
if num_tca > 0:
tca_imgs = imgs[:, -num_tca:]
tca_masks = masks[:, -num_tca:]
tca_binary = binary_masks[-num_tca:]
end_idx = -num_tca
else:
end_idx = T
imgs = imgs[:, num_tcb:end_idx]
masks = masks[:, num_tcb:end_idx]
binary_masks = binary_masks[num_tcb:end_idx] # only neighbor area are involved
frames = frames[num_tcb:end_idx] # only neighbor area are involved
for f in tqdm(range(0, video_length, self.neighbor_stride), desc='Inpainting image'):
neighbor_ids = [
i for i in range(max(0, f - self.neighbor_stride),
min(video_length, f + self.neighbor_stride + 1))
]
ref_ids = self.get_ref_index(f, neighbor_ids, video_length)
# selected_imgs = imgs[:1, neighbor_ids + ref_ids, :, :, :]
# selected_masks = masks[:1, neighbor_ids + ref_ids, :, :, :]
selected_imgs = imgs[:, neighbor_ids]
selected_masks = masks[:, neighbor_ids]
# pad before
if tcb_imgs is not None:
selected_imgs = torch.concat([selected_imgs, tcb_imgs], dim=1)
selected_masks = torch.concat([selected_masks, tcb_masks], dim=1)
# integrate ref frames
selected_imgs = torch.concat([selected_imgs, imgs[:, ref_ids]], dim=1)
selected_masks = torch.concat([selected_masks, masks[:, ref_ids]], dim=1)
# pad after
if tca_imgs is not None:
selected_imgs = torch.concat([selected_imgs, tca_imgs], dim=1)
selected_masks = torch.concat([selected_masks, tca_masks], dim=1)
with torch.no_grad():
masked_imgs = selected_imgs * (1 - selected_masks)
mod_size_h = 60
mod_size_w = 108
h_pad = (mod_size_h - h % mod_size_h) % mod_size_h
w_pad = (mod_size_w - w % mod_size_w) % mod_size_w
masked_imgs = torch.cat(
[masked_imgs, torch.flip(masked_imgs, [3])],
3)[:, :, :, :h + h_pad, :]
masked_imgs = torch.cat(
[masked_imgs, torch.flip(masked_imgs, [4])],
4)[:, :, :, :, :w + w_pad]
pred_imgs, _ = self.model(masked_imgs, len(neighbor_ids))
pred_imgs = pred_imgs[:, :, :h, :w]
pred_imgs = (pred_imgs + 1) / 2
pred_imgs = pred_imgs.cpu().permute(0, 2, 3, 1).numpy() * 255
for i in range(len(neighbor_ids)):
idx = neighbor_ids[i]
img = pred_imgs[i].astype(np.uint8) * binary_masks[idx] + frames[idx] * (
1 - binary_masks[idx])
if comp_frames[idx] is None:
comp_frames[idx] = img
else:
comp_frames[idx] = comp_frames[idx].astype(
np.float32) * 0.5 + img.astype(np.float32) * 0.5
torch.cuda.empty_cache()
inpainted_frames = np.stack(comp_frames, 0)
return inpainted_frames.astype(np.uint8)
def inpaint(self, frames_path, masks, dilate_radius=15, ratio=1):
"""
Perform Inpainting for video subsets
frames: numpy array, T, H, W, 3
masks: numpy array, T, H, W
dilate_radius: radius when applying dilation on masks
ratio: down-sample ratio
Output:
inpainted_frames: numpy array, T, H, W, 3
"""
# assert frames.shape[:3] == masks.shape, 'different size between frames and masks'
assert ratio > 0 and ratio <= 1, 'ratio must in (0, 1]'
# set interval
interval = 45
context_range = 10 # for each split, consider its temporal context [-context_range] frames and [context_range] frames
# split frames into subsets
video_length = len(frames_path)
num_splits = video_length // interval
id_splits = [[i*interval, (i+1)*interval] for i in range(num_splits)] # id splits
# if remaining split > interval/2, add a new split, else, append to the last split
if video_length - id_splits[-1][-1] > interval / 2:
id_splits.append([num_splits*interval, video_length])
else:
id_splits[-1][-1] = video_length
# perform inpainting for each split
inpainted_splits = []
for id_split in id_splits:
video_split_path = frames_path[id_split[0]:id_split[1]]
video_split = read_image_from_split(video_split_path)
mask_split = masks[id_split[0]:id_split[1]]
# | id_before | ----- | id_split[0] | ----- | id_split[1] | ----- | id_after |
# add temporal context
id_before = max(0, id_split[0] - self.step * context_range)
try:
tcb_frames = np.stack([np.array(Image.open(frames_path[idb])) for idb in range(id_before, id_split[0]-self.step, self.step)], 0)
tcb_masks = np.stack([masks[idb] for idb in range(id_before, id_split[0]-self.step, self.step)], 0)
num_tcb = len(tcb_frames)
except:
num_tcb = 0
id_after = min(video_length, id_split[1] + self.step * context_range)
try:
tca_frames = np.stack([np.array(Image.open(frames_path[ida])) for ida in range(id_split[1]+self.step, id_after, self.step)], 0)
tca_masks = np.stack([masks[ida] for ida in range(id_split[1]+self.step, id_after, self.step)], 0)
num_tca = len(tca_frames)
except:
num_tca = 0
# concatenate temporal context frames/masks with input frames/masks (for parallel pre-processing)
if num_tcb > 0:
video_split = np.concatenate([tcb_frames, video_split], 0)
mask_split = np.concatenate([tcb_masks, mask_split], 0)
if num_tca > 0:
video_split = np.concatenate([video_split, tca_frames], 0)
mask_split = np.concatenate([mask_split, tca_masks], 0)
# inpaint each split
inpainted_splits.append(self.inpaint_efficient(video_split, mask_split, num_tcb, num_tca, dilate_radius, ratio))
inpainted_frames = np.concatenate(inpainted_splits, 0)
return inpainted_frames.astype(np.uint8)
if __name__ == '__main__':
frame_path = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/JPEGImages/480p/parkour', '*.jpg'))
frame_path.sort()
mask_path = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/Annotations/480p/parkour', "*.png"))
mask_path.sort()
save_path = '/ssd1/gaomingqi/results/inpainting/parkour'
if not os.path.exists(save_path):
os.mkdir(save_path)
frames = []
masks = []
for fid, mid in zip(frame_path, mask_path):
frames.append(Image.open(fid).convert('RGB'))
masks.append(Image.open(mid).convert('P'))
frames = np.stack(frames, 0)
masks = np.stack(masks, 0)
# ----------------------------------------------
# how to use
# ----------------------------------------------
# 1/3: set checkpoint and device
checkpoint = '/ssd1/gaomingqi/checkpoints/E2FGVI-HQ-CVPR22.pth'
device = 'cuda:6'
# 2/3: initialise inpainter
base_inpainter = BaseInpainter(checkpoint, device)
# 3/3: inpainting (frames: numpy array, T, H, W, 3; masks: numpy array, T, H, W)
# ratio: (0, 1], ratio for down sample, default value is 1
inpainted_frames = base_inpainter.inpaint(frames, masks, ratio=0.01) # numpy array, T, H, W, 3
# ----------------------------------------------
# end
# ----------------------------------------------
# save
for ti, inpainted_frame in enumerate(inpainted_frames):
frame = Image.fromarray(inpainted_frame).convert('RGB')
frame.save(os.path.join(save_path, f'{ti:05d}.jpg'))