bambadij commited on
Commit
32cef64
·
1 Parent(s): 6ebb74c

Add application file

Browse files
Files changed (1) hide show
  1. app.py +94 -0
app.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import the required Libraries
2
+ import gradio as gr
3
+ import numpy as np
4
+ import pandas as pd
5
+ import os, joblib
6
+ import re
7
+
8
+
9
+ pipeline = joblib.load(r'toolkit\pipeline.joblib')
10
+
11
+
12
+ inputs = ['Origin_lat', 'Origin_lon', 'Destination_lat', 'Destination_lon',
13
+ 'Trip_distance', 'Speed', 'dewpoint_2m_temperature',
14
+ 'mean_2m_air_temperature', 'pickup_weekday', 'pickup_weekofyear',
15
+ 'pickup_hour', 'pickup_minute', 'pickup_week_hour', 'month',
16
+ 'day_of_week', 'cluster_id', 'target_transformed', 'temperature_range',
17
+ 'wind_speed', 'rain']
18
+
19
+ def predict(*args, pipeline=pipeline, inputs=inputs):
20
+ # Check if inputs is provided
21
+ if inputs is None:
22
+ raise ValueError("Please provide the 'inputs' parameter.")
23
+
24
+ # Creating a DataFrame of inputs
25
+ input_data = pd.DataFrame([args], columns=inputs)
26
+ print(input_data)
27
+
28
+ # Modeling
29
+ try:
30
+ model_output = abs(int(pipeline.predict(input_data)))
31
+ except Exception as e:
32
+ print(f"Error during prediction: {str(e)}")
33
+ model_output = 0
34
+
35
+ output_str = 'Hey there, Your ETA is'
36
+ dist = 'seconds'
37
+
38
+ return f"{output_str} {model_output} {dist}"
39
+
40
+
41
+ with gr.Blocks(theme=gr.themes.Monochrome()) as app:
42
+ gr.Markdown("# ETA PREDICTION")
43
+ gr.Markdown("""This app uses a machine learning model to predict the ETA of trips on the Yassir Hailing App.Refer to the expander at the bottom for more information on the inputs.""")
44
+
45
+ with gr.Row():
46
+ origin_lat= gr.Slider(2.806,3.381,step = 0.01,interactive=True, value=2.806, label = 'origin_lat')
47
+ origin_lon = gr.Slider(36.589,36.820,step =0.01,interactive=True, value=36.589,label = 'origin_lon')
48
+ Destination_lat =gr.Slider(2.807,3.381,step = 0.1,interactive=True, value=2.81,label ='Destination_lat')
49
+ Destination_lon =gr.Slider(36.592,36.819,step = 0.1,interactive=True, value=36.596,label ='Destination_lon')
50
+ Trip_distance = gr.Slider(61,958,step =10,interactive=True, value=20,label = 'Trip_distance')
51
+ Speed = gr.Slider(0.300,85.000, step=0.01, interactive=True, value=20, label = 'Speed')
52
+
53
+ with gr.Column():
54
+ dewpoint_2m_temperature =gr.Slider(280.000, 288.000, step = 0.01,interactive=True, value=282.201,label ='dewpoint_2m_temperature')
55
+ mean_2m_air_temperature =gr.Slider(285.203, 291.110,step = 0.1,interactive=True, value=287.203,label ='mean_2m_air_temperature')
56
+ pickup_weekday = gr.Dropdown([0,1,2,3,4,5,6],label ='pickup_weekday', value=3)
57
+ pickup_weekofyear = gr.Dropdown([47,48,49,50],label="pickup_weekofyear",value=3)
58
+ pickup_hour = gr.Dropdown([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
59
+ ,label="pickup_hour",value=13)
60
+ pickup_minute = gr.Slider(0, 59, step = 1,interactive=True, value=5,label ='pickup_minute')
61
+ pickup_week_hour = gr.Slider(0, 167, step = 1,interactive=True, value=5,label ='pickup_week_hour')
62
+ month = gr.Dropdown([11,12],label = 'month')
63
+ day_of_week = gr.Dropdown([0,1,2,3,4,5,6],label ='day_of_week', value=3)
64
+ cluster_id = gr.Dropdown([1,2,3,4,5,6,7],label="Cluster ID", value=4)
65
+
66
+ with gr.Column():
67
+ target_transformed = gr.Slider(0, 336.426, step = 0.01,interactive=True, value=100,label ='target_transformed')
68
+ temperature_range = gr.Slider(2.317, 9.166, step = 0.01,interactive=True, value=5,label='temperature_range')
69
+ wind_speed = gr.Slider(0.803, 9.887, step = 0.01,interactive=True, value=5,label='wind_speed')
70
+ rain = gr.Dropdown([0,1],label='rain')
71
+
72
+ with gr.Row():
73
+ btn = gr.Button("Predict")
74
+ output = gr.Textbox(label="Prediction")
75
+
76
+ # Expander for more info on columns
77
+ with gr.Accordion("Information on inputs"):
78
+ gr.Markdown("""These are information on the inputs the app takes for predicting a rides ETA.
79
+ - origin_lat: Origin in degree latitude)
80
+ - origin_lon: Origin in degree longitude
81
+ - Destination_lat: Destination latitude
82
+ - Destination_lon: Destination logitude
83
+ - Trip Distance : Distance in meters on a driving route
84
+ - Cluster ID : Select the cluster within which you started your trip
85
+ - Time of the day: What time in the day did your trip start, 1- morning(or daytime),2 - evening 3- midnight
86
+ """)
87
+ btn.click(fn = predict,inputs= [origin_lat, origin_lon, Destination_lat, Destination_lon,
88
+ Trip_distance, Speed, dewpoint_2m_temperature,
89
+ mean_2m_air_temperature, pickup_weekday, pickup_weekofyear,
90
+ pickup_hour, pickup_minute, pickup_week_hour, month,
91
+ day_of_week, cluster_id, target_transformed, temperature_range,
92
+ wind_speed, rain], outputs = output)
93
+
94
+ app.launch(share = True, debug =True)