Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,71 +5,139 @@ import torch
|
|
5 |
import os
|
6 |
from typing import Optional
|
7 |
import numpy as np
|
|
|
|
|
|
|
8 |
|
9 |
-
# Check for CUDA availability and set device
|
10 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
11 |
|
12 |
-
# Initialize model and processor
|
13 |
-
processor = AutoProcessor.from_pretrained(
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
if DEVICE == "cuda":
|
|
|
19 |
torch.backends.cudnn.benchmark = True
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
24 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def get_cache_path(text: str, voice_preset: str) -> str:
|
27 |
-
"""Generate a unique cache path
|
28 |
import hashlib
|
29 |
hash_key = hashlib.md5(f"{text}_{voice_preset}".encode()).hexdigest()
|
30 |
return os.path.join(CACHE_DIR, f"{hash_key}.wav")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
try:
|
35 |
-
|
36 |
-
cache_path = get_cache_path(text, voice_preset)
|
37 |
-
if os.path.exists(cache_path):
|
38 |
-
return cache_path
|
39 |
-
|
40 |
-
# Generate audio from text
|
41 |
-
inputs = processor(text, voice_preset=voice_preset)
|
42 |
-
|
43 |
-
# Move inputs to device
|
44 |
inputs = {k: v.to(DEVICE) if isinstance(v, torch.Tensor) else v
|
45 |
for k, v in inputs.items()}
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
53 |
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
|
60 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
sample_rate = model.generation_config.sample_rate
|
62 |
-
|
63 |
-
# Save audio file to cache
|
64 |
scipy.io.wavfile.write(cache_path, rate=sample_rate, data=audio_array)
|
65 |
|
66 |
return cache_path
|
67 |
-
|
68 |
except Exception as e:
|
69 |
-
print(f"Error
|
70 |
return None
|
71 |
|
72 |
-
#
|
73 |
voice_presets = [
|
74 |
"v2/hi_speaker_1",
|
75 |
"v2/hi_speaker_2",
|
@@ -78,20 +146,30 @@ voice_presets = [
|
|
78 |
"v2/hi_speaker_5"
|
79 |
]
|
80 |
|
81 |
-
# Create Gradio interface
|
82 |
demo = gr.Interface(
|
83 |
fn=text_to_speech,
|
84 |
inputs=[
|
85 |
-
gr.Textbox(
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
],
|
88 |
outputs=gr.Audio(label="Generated Speech"),
|
89 |
-
title="Bark Text-to-Speech",
|
90 |
-
description="Convert text to speech using the Bark model.
|
|
|
|
|
|
|
|
|
91 |
cache_examples=True,
|
92 |
)
|
93 |
|
94 |
-
# Launch
|
95 |
-
|
96 |
-
demo.launch()
|
97 |
-
|
|
|
5 |
import os
|
6 |
from typing import Optional
|
7 |
import numpy as np
|
8 |
+
from concurrent.futures import ThreadPoolExecutor
|
9 |
+
import warnings
|
10 |
+
warnings.filterwarnings('ignore')
|
11 |
|
|
|
12 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
print(f"Using device: {DEVICE}")
|
14 |
|
15 |
+
# Initialize model and processor with HF-optimized settings
|
16 |
+
processor = AutoProcessor.from_pretrained(
|
17 |
+
"suno/bark",
|
18 |
+
use_fast=True,
|
19 |
+
trust_remote_code=True
|
20 |
+
)
|
21 |
+
|
22 |
+
model = BarkModel.from_pretrained(
|
23 |
+
"suno/bark",
|
24 |
+
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
25 |
+
low_cpu_mem_usage=True,
|
26 |
+
trust_remote_code=True
|
27 |
+
)
|
28 |
|
29 |
+
# Optimize model based on device
|
30 |
if DEVICE == "cuda":
|
31 |
+
model = model.half()
|
32 |
torch.backends.cudnn.benchmark = True
|
33 |
+
torch.backends.cudnn.enabled = True
|
34 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
35 |
+
torch.backends.cudnn.allow_tf32 = True
|
36 |
+
else:
|
37 |
+
model = torch.quantization.quantize_dynamic(
|
38 |
+
model, {torch.nn.Linear}, dtype=torch.qint8
|
39 |
+
)
|
40 |
|
41 |
+
model.to(DEVICE)
|
42 |
+
model.eval()
|
43 |
+
|
44 |
+
# Cache in HF Space-friendly location
|
45 |
+
CACHE_DIR = "/tmp/audio_cache"
|
46 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
47 |
+
MAX_TEXT_LENGTH = 200
|
48 |
+
|
49 |
+
def chunk_text(text: str) -> list[str]:
|
50 |
+
"""Split text into smaller chunks at sentence boundaries."""
|
51 |
+
if len(text) <= MAX_TEXT_LENGTH:
|
52 |
+
return [text]
|
53 |
+
|
54 |
+
sentences = text.replace('।', '.').split('.')
|
55 |
+
chunks = []
|
56 |
+
current_chunk = ""
|
57 |
+
|
58 |
+
for sentence in sentences:
|
59 |
+
if len(current_chunk) + len(sentence) <= MAX_TEXT_LENGTH:
|
60 |
+
current_chunk += sentence + "."
|
61 |
+
else:
|
62 |
+
if current_chunk:
|
63 |
+
chunks.append(current_chunk.strip())
|
64 |
+
current_chunk = sentence + "."
|
65 |
+
|
66 |
+
if current_chunk:
|
67 |
+
chunks.append(current_chunk.strip())
|
68 |
+
|
69 |
+
return chunks
|
70 |
|
71 |
def get_cache_path(text: str, voice_preset: str) -> str:
|
72 |
+
"""Generate a unique cache path."""
|
73 |
import hashlib
|
74 |
hash_key = hashlib.md5(f"{text}_{voice_preset}".encode()).hexdigest()
|
75 |
return os.path.join(CACHE_DIR, f"{hash_key}.wav")
|
76 |
|
77 |
+
def process_chunk(chunk: str, voice_preset: str) -> np.ndarray:
|
78 |
+
"""Process a single text chunk."""
|
79 |
try:
|
80 |
+
inputs = processor(chunk, voice_preset=voice_preset)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
inputs = {k: v.to(DEVICE) if isinstance(v, torch.Tensor) else v
|
82 |
for k, v in inputs.items()}
|
83 |
|
84 |
+
with torch.inference_mode(), torch.cuda.amp.autocast() if DEVICE == "cuda" else torch.no_grad():
|
85 |
+
audio_array = model.generate(
|
86 |
+
**inputs,
|
87 |
+
do_sample=True,
|
88 |
+
guidance_scale=2.0,
|
89 |
+
temperature=0.7,
|
90 |
+
)
|
91 |
|
92 |
+
return audio_array.cpu().numpy().squeeze()
|
93 |
+
except Exception as e:
|
94 |
+
print(f"Error processing chunk: {str(e)}")
|
95 |
+
return np.zeros(0)
|
96 |
+
|
97 |
+
@torch.inference_mode()
|
98 |
+
def text_to_speech(text: str, voice_preset: str = "v2/hi_speaker_2") -> Optional[str]:
|
99 |
+
try:
|
100 |
+
if not text.strip():
|
101 |
+
return None
|
102 |
+
|
103 |
+
# Clear old cache files
|
104 |
+
for file in os.listdir(CACHE_DIR):
|
105 |
+
if file.endswith('.wav'):
|
106 |
+
try:
|
107 |
+
os.remove(os.path.join(CACHE_DIR, file))
|
108 |
+
except:
|
109 |
+
pass
|
110 |
+
|
111 |
+
cache_path = get_cache_path(text, voice_preset)
|
112 |
|
113 |
+
# Process text
|
114 |
+
chunks = chunk_text(text)
|
115 |
|
116 |
+
# Process chunks based on length
|
117 |
+
if len(chunks) > 1:
|
118 |
+
with ThreadPoolExecutor(max_workers=2) as executor:
|
119 |
+
audio_chunks = list(executor.map(
|
120 |
+
lambda x: process_chunk(x, voice_preset),
|
121 |
+
chunks
|
122 |
+
))
|
123 |
+
audio_array = np.concatenate([chunk for chunk in audio_chunks if chunk.size > 0])
|
124 |
+
else:
|
125 |
+
audio_array = process_chunk(chunks[0], voice_preset)
|
126 |
+
|
127 |
+
if audio_array.size == 0:
|
128 |
+
return None
|
129 |
+
|
130 |
+
# Normalize and save
|
131 |
+
audio_array = np.clip(audio_array, -1, 1)
|
132 |
sample_rate = model.generation_config.sample_rate
|
|
|
|
|
133 |
scipy.io.wavfile.write(cache_path, rate=sample_rate, data=audio_array)
|
134 |
|
135 |
return cache_path
|
|
|
136 |
except Exception as e:
|
137 |
+
print(f"Error in text_to_speech: {str(e)}")
|
138 |
return None
|
139 |
|
140 |
+
# Voice presets
|
141 |
voice_presets = [
|
142 |
"v2/hi_speaker_1",
|
143 |
"v2/hi_speaker_2",
|
|
|
146 |
"v2/hi_speaker_5"
|
147 |
]
|
148 |
|
149 |
+
# Create Gradio interface
|
150 |
demo = gr.Interface(
|
151 |
fn=text_to_speech,
|
152 |
inputs=[
|
153 |
+
gr.Textbox(
|
154 |
+
label="Enter text (Hindi or English)",
|
155 |
+
placeholder="Type your text here...",
|
156 |
+
lines=4
|
157 |
+
),
|
158 |
+
gr.Dropdown(
|
159 |
+
choices=voice_presets,
|
160 |
+
value="v2/hi_speaker_2",
|
161 |
+
label="Select Voice"
|
162 |
+
)
|
163 |
],
|
164 |
outputs=gr.Audio(label="Generated Speech"),
|
165 |
+
title="🎧 Bark Text-to-Speech",
|
166 |
+
description="""Convert text to speech using the Bark model.
|
167 |
+
\n- Supports both Hindi and English text
|
168 |
+
\n- Multiple voice options available
|
169 |
+
\n- For best results, keep text length moderate""",
|
170 |
+
,
|
171 |
cache_examples=True,
|
172 |
)
|
173 |
|
174 |
+
# Launch for HF Spaces
|
175 |
+
demo.launch()
|
|
|
|