awitecki commited on
Commit
7dfe0e4
·
1 Parent(s): 64af5e0

[NT] Use pretrained model for summarization

Browse files
Files changed (2) hide show
  1. app.py +10 -1
  2. requirements.txt +2 -0
app.py CHANGED
@@ -1,7 +1,16 @@
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
2
 
3
  def get_summary(text):
4
- return "You summary:\n" + text
5
 
6
  iface = gr.Interface(fn=get_summary, inputs="text", outputs="text")
7
  iface.launch()
 
1
+ __all__ = ['learn', 'get_summary', 'intf']
2
+
3
+ from fastai.vision.all import *
4
  import gradio as gr
5
+ from blurr.text.data.all import *
6
+ from blurr.text.modeling.all import *
7
+
8
+ pre_trained_model_name = "sshleifer/distilbart-cnn-6-6"
9
+ hf_arch, hf_config, hf_tokenizer, hf_model = BlurrText().get_hf_objects(pre_trained_model_name, model_cls=BartForConditionalGeneration)
10
+ #learn = load_learner(fname='cnn_model.pkl')
11
 
12
  def get_summary(text):
13
+ return hf_model.blurr_summarize(text)
14
 
15
  iface = gr.Interface(fn=get_summary, inputs="text", outputs="text")
16
  iface.launch()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ bert_score
2
+ ohmeow-blurr