awacke1 commited on
Commit
fd25a82
·
verified ·
1 Parent(s): 5ccd3ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +423 -126
app.py CHANGED
@@ -1,152 +1,449 @@
1
- import gradio as gr
2
- from utils import MEGABenchEvalDataLoader
3
  import os
4
- from constants import *
 
 
 
5
 
6
- # Get the directory of the current script
7
- current_dir = os.path.dirname(os.path.abspath(__file__))
 
 
 
 
 
 
8
 
9
- # Construct paths to CSS files
10
- base_css_file = os.path.join(current_dir, "static", "css", "style.css")
11
- table_css_file = os.path.join(current_dir, "static", "css", "table.css")
 
 
12
 
13
- # Read CSS files
14
- with open(base_css_file, "r") as f:
 
 
 
15
  base_css = f.read()
16
- with open(table_css_file, "r") as f:
17
  table_css = f.read()
18
 
19
- # Initialize data loaders
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  default_loader = MEGABenchEvalDataLoader("./static/eval_results/Default")
21
  si_loader = MEGABenchEvalDataLoader("./static/eval_results/SI")
22
 
23
- with gr.Blocks() as block:
24
- # Add a style element that we'll update
25
- css_style = gr.HTML(
26
- f"<style>{base_css}\n{table_css}</style>",
27
- visible=False
 
 
 
 
 
 
 
 
 
28
  )
29
-
30
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
31
- with gr.TabItem("📊 MEGA-Bench", elem_id="qa-tab-table1", id=0):
32
- # Define different captions for each table
33
- default_caption = "**Table 1: MEGA-Bench full results.** The number in the parentheses is the number of tasks of each keyword. <br> The Core set contains $N_{\\text{core}} = 440$ tasks evaluated by rule-based metrics, and the Open-ended set contains $N_{\\text{open}} = 65$ tasks evaluated by a VLM judge (we use GPT-4o-0806). <br> Different from the results in our paper, we only use the Core results with CoT prompting here for clarity and compatibility with the released data. <br> $\\text{Overall} \\ = \\ \\frac{\\text{Core} \\ \\cdot \\ N_{\\text{core}} \\ + \\ \\text{Open-ended} \\ \\cdot \\ N_{\\text{open}}}{N_{\\text{core}} \\ + \\ N_{\\text{open}}}$ <br> * indicates self-reported results from the model authors."
34
 
35
- single_image_caption = "**Table 2: MEGA-Bench Single-image setting results.** The number in the parentheses is the number of tasks in each keyword. <br> This subset contains 273 single-image tasks from the Core set and 42 single-image tasks from the Open-ended set. For open-source models, we drop the image input in the 1-shot demonstration example so that the entire query contains a single image only. <br> Compared to the default table, some models with only single-image support are added."
 
 
36
 
37
- caption_component = gr.Markdown(
38
- value=default_caption,
39
- elem_classes="table-caption",
40
- latex_delimiters=[{"left": "$", "right": "$", "display": False}],
41
- )
 
42
 
43
- with gr.Row():
44
- super_group_selector = gr.Radio(
45
- choices=list(default_loader.SUPER_GROUPS.keys()),
46
- label="Select a dimension to display breakdown results. We use different column colors to distinguish the overall benchmark scores and breakdown results.",
47
- value=list(default_loader.SUPER_GROUPS.keys())[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  )
49
- model_group_selector = gr.Radio(
50
- choices=list(BASE_MODEL_GROUPS.keys()),
51
- label="Select a model group",
52
- value="All"
53
  )
54
-
55
- initial_headers, initial_data = default_loader.get_leaderboard_data(list(default_loader.SUPER_GROUPS.keys())[0], "All")
56
- data_component = gr.Dataframe(
57
- value=initial_data,
58
- headers=initial_headers,
59
- datatype=["number", "html"] + ["number"] * (len(initial_headers) - 2),
60
- interactive=True,
61
- elem_classes="custom-dataframe",
62
- max_height=2400,
63
- column_widths=["100px", "240px"] + ["160px"] * 3 + ["210px"] * (len(initial_headers) - 5),
64
  )
65
 
66
- def update_table_and_caption(table_type, super_group, model_group):
67
- if table_type == "Default":
68
- headers, data = default_loader.get_leaderboard_data(super_group, model_group)
69
- caption = default_caption
70
- else: # Single-image
71
- headers, data = si_loader.get_leaderboard_data(super_group, model_group)
72
- caption = single_image_caption
73
-
74
- return [
75
- gr.Dataframe(
76
- value=data,
77
- headers=headers,
78
- datatype=["number", "html"] + ["number"] * (len(headers) - 2),
79
- interactive=True,
80
- column_widths=["100px", "240px"] + ["160px"] * 3 + ["210px"] * (len(headers) - 5),
81
- ),
82
- caption,
83
- f"<style>{base_css}\n{table_css}</style>"
84
- ]
85
 
86
- with gr.Row():
87
- with gr.Accordion("Citation", open=False):
88
- citation_button = gr.Textbox(
89
- value=CITATION_BUTTON_TEXT,
90
- label=CITATION_BUTTON_LABEL,
91
- elem_id="citation-button",
92
- lines=10,
93
- )
94
- gr.Markdown(
95
- TABLE_INTRODUCTION
96
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
- with gr.Row():
99
- table_selector = gr.Radio(
100
- choices=["Default", "Single Image"],
101
- label="Select table to display. Default: all MEGA-Bench tasks; Single Image: single-image tasks only.",
102
- value="Default"
103
- )
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
- def update_selectors(table_type):
106
- loader = default_loader if table_type == "Default" else si_loader
107
- return [
108
- gr.Radio(choices=list(loader.SUPER_GROUPS.keys())),
109
- gr.Radio(choices=list(loader.MODEL_GROUPS.keys()))
110
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
112
- refresh_button = gr.Button("Refresh")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
- # Update click and change handlers to include caption updates
115
- refresh_button.click(
116
- fn=update_table_and_caption,
117
- inputs=[table_selector, super_group_selector, model_group_selector],
118
- outputs=[data_component, caption_component, css_style]
119
- )
120
- super_group_selector.change(
121
- fn=update_table_and_caption,
122
- inputs=[table_selector, super_group_selector, model_group_selector],
123
- outputs=[data_component, caption_component, css_style]
124
- )
125
- model_group_selector.change(
126
- fn=update_table_and_caption,
127
- inputs=[table_selector, super_group_selector, model_group_selector],
128
- outputs=[data_component, caption_component, css_style]
129
- )
130
- table_selector.change(
131
- fn=update_selectors,
132
- inputs=[table_selector],
133
- outputs=[super_group_selector, model_group_selector]
134
- ).then(
135
- fn=update_table_and_caption,
136
- inputs=[table_selector, super_group_selector, model_group_selector],
137
- outputs=[data_component, caption_component, css_style]
138
- )
139
- with gr.TabItem("📚 Introduction", elem_id="intro-tab", id=1):
140
- gr.Markdown(
141
- LEADERBOARD_INTRODUCTION
142
- )
143
 
144
- with gr.TabItem("📝 Data Information", elem_id="qa-tab-table2", id=2):
145
- gr.Markdown(DATA_INFO, elem_classes="markdown-text")
146
-
147
- with gr.TabItem("🚀 Submit", elem_id="submit-tab", id=3):
148
- with gr.Row():
149
- gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
 
 
 
 
151
  if __name__ == "__main__":
152
- block.launch(share=True, show_api=False)
 
 
 
 
1
  import os
2
+ import json
3
+ import tempfile
4
+ import zipfile
5
+ from datetime import datetime
6
 
7
+ import gradio as gr
8
+ import numpy as np
9
+ import torch
10
+ from PIL import Image
11
+
12
+ # Program A imports
13
+ from utils import MEGABenchEvalDataLoader
14
+ from constants import * # This is assumed to define CITATION_BUTTON_TEXT, CITATION_BUTTON_LABEL, TABLE_INTRODUCTION, LEADERBOARD_INTRODUCTION, DATA_INFO, SUBMIT_INTRODUCTION, BASE_MODEL_GROUPS, etc.
15
 
16
+ # Program B imports
17
+ import spaces
18
+ from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, Qwen2_5_VLForConditionalGeneration
19
+ from qwen_vl_utils import process_vision_info
20
+ from gliner import GLiNER
21
 
22
+ # ----------------------------------------------------------------
23
+ # Combined CSS
24
+ # ----------------------------------------------------------------
25
+ current_dir = os.path.dirname(os.path.abspath(__file__))
26
+ with open(os.path.join(current_dir, "static", "css", "style.css"), "r") as f:
27
  base_css = f.read()
28
+ with open(os.path.join(current_dir, "static", "css", "table.css"), "r") as f:
29
  table_css = f.read()
30
 
31
+ css_program_b = """
32
+ /* Program B CSS */
33
+ .gradio-container {
34
+ max-width: 1200px !important;
35
+ margin: 0 auto;
36
+ padding: 20px;
37
+ background-color: #f8f9fa;
38
+ }
39
+ .tabs {
40
+ border-radius: 8px;
41
+ background: white;
42
+ padding: 20px;
43
+ box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1);
44
+ }
45
+ .input-container, .output-container {
46
+ background: white;
47
+ border-radius: 8px;
48
+ padding: 15px;
49
+ margin: 10px 0;
50
+ box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
51
+ }
52
+ .submit-btn {
53
+ background-color: #2d31fa !important;
54
+ border: none !important;
55
+ padding: 8px 20px !important;
56
+ border-radius: 6px !important;
57
+ color: white !important;
58
+ transition: all 0.3s ease !important;
59
+ }
60
+ .submit-btn:hover {
61
+ background-color: #1f24c7 !important;
62
+ transform: translateY(-1px);
63
+ }
64
+ #output {
65
+ height: 500px;
66
+ overflow: auto;
67
+ border: 1px solid #e0e0e0;
68
+ border-radius: 6px;
69
+ padding: 15px;
70
+ background: #ffffff;
71
+ font-family: 'Arial', sans-serif;
72
+ }
73
+ .gr-dropdown {
74
+ border-radius: 6px !important;
75
+ border: 1px solid #e0e0e0 !important;
76
+ }
77
+ .gr-image-input {
78
+ border: 2px dashed #ccc;
79
+ border-radius: 8px;
80
+ padding: 20px;
81
+ transition: all 0.3s ease;
82
+ }
83
+ .gr-image-input:hover {
84
+ border-color: #2d31fa;
85
+ }
86
+ """
87
+ css_global = base_css + "\n" + table_css + "\n" + css_program_b
88
+
89
+ # ----------------------------------------------------------------
90
+ # Program A Global Initializations
91
+ # ----------------------------------------------------------------
92
  default_loader = MEGABenchEvalDataLoader("./static/eval_results/Default")
93
  si_loader = MEGABenchEvalDataLoader("./static/eval_results/SI")
94
 
95
+ # ----------------------------------------------------------------
96
+ # Program B Global Initializations
97
+ # ----------------------------------------------------------------
98
+ gliner_model = GLiNER.from_pretrained("knowledgator/modern-gliner-bi-large-v1.0")
99
+ DEFAULT_NER_LABELS = "person, organization, location, date, event"
100
+
101
+ models = {
102
+ "Qwen/Qwen2.5-VL-7B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained(
103
+ "Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto"
104
+ ).cuda().eval()
105
+ }
106
+ processors = {
107
+ "Qwen/Qwen2.5-VL-7B-Instruct": AutoProcessor.from_pretrained(
108
+ "Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True
109
  )
110
+ }
 
 
 
 
111
 
112
+ user_prompt = '<|user|>\n'
113
+ assistant_prompt = '<|assistant|>\n'
114
+ prompt_suffix = "<|end|>\n"
115
 
116
+ # A simple metadata container for OCR results and entity information.
117
+ class TextWithMetadata(list):
118
+ def __init__(self, *args, **kwargs):
119
+ super().__init__(*args)
120
+ self.original_text = kwargs.get('original_text', '')
121
+ self.entities = kwargs.get('entities', [])
122
 
123
+ # ----------------------------------------------------------------
124
+ # UI DEFINITION (placed at the top)
125
+ # ----------------------------------------------------------------
126
+ with gr.Blocks(css=css_global) as demo:
127
+ with gr.Tabs():
128
+ # -------------------------
129
+ # Tab 1: Dashboard (Program A)
130
+ # -------------------------
131
+ with gr.TabItem("Dashboard"):
132
+ with gr.Tabs(elem_classes="tab-buttons") as dashboard_tabs:
133
+ # --- MEGA-Bench Leaderboard Tab ---
134
+ with gr.TabItem("📊 MEGA-Bench"):
135
+ # Inject table CSS (will be updated when the table is refreshed)
136
+ css_style = gr.HTML(f"<style>{base_css}\n{table_css}</style>", visible=False)
137
+
138
+ # Define captions for default vs. single-image tables
139
+ default_caption = ("**Table 1: MEGA-Bench full results.** The number in the parentheses is the number of tasks "
140
+ "of each keyword. <br> The Core set contains $N_{\\text{core}} = 440$ tasks evaluated by "
141
+ "rule-based metrics, and the Open-ended set contains $N_{\\text{open}} = 65$ tasks evaluated by a "
142
+ "VLM judge (we use GPT-4o-0806). <br> Different from the results in our paper, we only use the Core "
143
+ "results with CoT prompting here for clarity and compatibility with the released data. <br> "
144
+ "$\\text{Overall} \\ = \\ \\frac{\\text{Core} \\ \\cdot \\ N_{\\text{core}} \\ + \\ \\text{Open-ended} "
145
+ "\\ \\cdot \\ N_{\\text{open}}}{N_{\\text{core}} \\ + \\ N_{\\text{open}}}$ <br> * indicates self-reported "
146
+ "results from the model authors.")
147
+ single_image_caption = ("**Table 2: MEGA-Bench Single-image setting results.** The number in the parentheses is the number of tasks "
148
+ "in each keyword. <br> This subset contains 273 single-image tasks from the Core set and 42 single-image tasks "
149
+ "from the Open-ended set. For open-source models, we drop the image input in the 1-shot demonstration example so that "
150
+ "the entire query contains a single image only. <br> Compared to the default table, some models with only "
151
+ "single-image support are added.")
152
+
153
+ caption_component = gr.Markdown(
154
+ value=default_caption,
155
+ elem_classes="table-caption",
156
+ latex_delimiters=[{"left": "$", "right": "$", "display": False}],
157
+ )
158
+
159
+ with gr.Row():
160
+ super_group_selector = gr.Radio(
161
+ choices=list(default_loader.SUPER_GROUPS.keys()),
162
+ label="Select a dimension to display breakdown results. We use different column colors to distinguish the overall benchmark scores and breakdown results.",
163
+ value=list(default_loader.SUPER_GROUPS.keys())[0]
164
+ )
165
+ model_group_selector = gr.Radio(
166
+ choices=list(BASE_MODEL_GROUPS.keys()),
167
+ label="Select a model group",
168
+ value="All"
169
+ )
170
+
171
+ initial_headers, initial_data = default_loader.get_leaderboard_data(
172
+ list(default_loader.SUPER_GROUPS.keys())[0], "All"
173
+ )
174
+ data_component = gr.Dataframe(
175
+ value=initial_data,
176
+ headers=initial_headers,
177
+ datatype=["number", "html"] + ["number"] * (len(initial_headers) - 2),
178
+ interactive=True,
179
+ elem_classes="custom-dataframe",
180
+ max_height=2400,
181
+ column_widths=["100px", "240px"] + ["160px"] * 3 + ["210px"] * (len(initial_headers) - 5),
182
+ )
183
+
184
+ with gr.Row():
185
+ with gr.Accordion("Citation", open=False):
186
+ citation_button = gr.Textbox(
187
+ value=CITATION_BUTTON_TEXT,
188
+ label=CITATION_BUTTON_LABEL,
189
+ elem_id="citation-button",
190
+ lines=10,
191
+ )
192
+ gr.Markdown(TABLE_INTRODUCTION)
193
+
194
+ with gr.Row():
195
+ table_selector = gr.Radio(
196
+ choices=["Default", "Single Image"],
197
+ label="Select table to display. Default: all MEGA-Bench tasks; Single Image: single-image tasks only.",
198
+ value="Default"
199
+ )
200
+
201
+ refresh_button = gr.Button("Refresh")
202
+
203
+ # Wire up event handlers (functions defined below)
204
+ refresh_button.click(
205
+ fn=update_table_and_caption,
206
+ inputs=[table_selector, super_group_selector, model_group_selector],
207
+ outputs=[data_component, caption_component, css_style]
208
+ )
209
+ super_group_selector.change(
210
+ fn=update_table_and_caption,
211
+ inputs=[table_selector, super_group_selector, model_group_selector],
212
+ outputs=[data_component, caption_component, css_style]
213
+ )
214
+ model_group_selector.change(
215
+ fn=update_table_and_caption,
216
+ inputs=[table_selector, super_group_selector, model_group_selector],
217
+ outputs=[data_component, caption_component, css_style]
218
+ )
219
+ table_selector.change(
220
+ fn=update_selectors,
221
+ inputs=[table_selector],
222
+ outputs=[super_group_selector, model_group_selector]
223
+ ).then(
224
+ fn=update_table_and_caption,
225
+ inputs=[table_selector, super_group_selector, model_group_selector],
226
+ outputs=[data_component, caption_component, css_style]
227
+ )
228
+
229
+ # --- Introduction Tab ---
230
+ with gr.TabItem("📚 Introduction"):
231
+ gr.Markdown(LEADERBOARD_INTRODUCTION)
232
+ # --- Data Information Tab ---
233
+ with gr.TabItem("📝 Data Information"):
234
+ gr.Markdown(DATA_INFO, elem_classes="markdown-text")
235
+ # --- Submit Tab ---
236
+ with gr.TabItem("🚀 Submit"):
237
+ with gr.Row():
238
+ gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
239
+
240
+ # -------------------------
241
+ # Tab 2: Image Processing (Program B)
242
+ # -------------------------
243
+ with gr.TabItem("Image Processing"):
244
+ # A default image is shown for context.
245
+ gr.Image("Caracal.jpg", interactive=False)
246
+ # It is important to create a state variable to store the OCR/NER result.
247
+ ocr_state = gr.State()
248
+ with gr.Tab(label="Image Input", elem_classes="tabs"):
249
+ with gr.Row():
250
+ with gr.Column(elem_classes="input-container"):
251
+ input_img = gr.Image(label="Input Picture", elem_classes="gr-image-input")
252
+ model_selector = gr.Dropdown(
253
+ choices=list(models.keys()),
254
+ label="Model",
255
+ value="Qwen/Qwen2.5-VL-7B-Instruct",
256
+ elem_classes="gr-dropdown"
257
+ )
258
+ with gr.Row():
259
+ ner_checkbox = gr.Checkbox(label="Run Named Entity Recognition", value=False)
260
+ ner_labels = gr.Textbox(
261
+ label="NER Labels (comma-separated)",
262
+ value=DEFAULT_NER_LABELS,
263
+ visible=False
264
+ )
265
+ submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
266
+ with gr.Column(elem_classes="output-container"):
267
+ output_text = gr.HighlightedText(label="Output Text", elem_id="output")
268
+ # Toggle visibility of the NER labels textbox.
269
+ ner_checkbox.change(
270
+ lambda x: gr.update(visible=x),
271
+ inputs=[ner_checkbox],
272
+ outputs=[ner_labels]
273
  )
274
+ submit_btn.click(
275
+ fn=run_example,
276
+ inputs=[input_img, model_selector, ner_checkbox, ner_labels],
277
+ outputs=[output_text, ocr_state]
278
  )
279
+ with gr.Row():
280
+ filename = gr.Textbox(label="Save filename (without extension)", placeholder="Enter filename to save")
281
+ download_btn = gr.Button("Download Image & Text", elem_classes="submit-btn")
282
+ download_output = gr.File(label="Download")
283
+ download_btn.click(
284
+ fn=create_zip,
285
+ inputs=[input_img, filename, ocr_state],
286
+ outputs=[download_output]
 
 
287
  )
288
 
289
+ # ----------------------------------------------------------------
290
+ # FUNCTION DEFINITIONS
291
+ # ----------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292
 
293
+ def update_table_and_caption(table_type, super_group, model_group):
294
+ """
295
+ Updates the leaderboard DataFrame, caption and CSS based on the table type and selectors.
296
+ """
297
+ if table_type == "Default":
298
+ headers, data = default_loader.get_leaderboard_data(super_group, model_group)
299
+ caption = ("**Table 1: MEGA-Bench full results.** The number in the parentheses is the number of tasks "
300
+ "of each keyword. <br> The Core set contains $N_{\\text{core}} = 440$ tasks evaluated by rule-based metrics, and the "
301
+ "Open-ended set contains $N_{\\text{open}} = 65$ tasks evaluated by a VLM judge (we use GPT-4o-0806). <br> "
302
+ "Different from the results in our paper, we only use the Core results with CoT prompting here for clarity and compatibility "
303
+ "with the released data. <br> $\\text{Overall} \\ = \\ \\frac{\\text{Core} \\ \\cdot \\ N_{\\text{core}} \\ + \\ \\text{Open-ended} "
304
+ "\\ \\cdot \\ N_{\\text{open}}}{N_{\\text{core}} \\ + \\ N_{\\text{open}}}$ <br> * indicates self-reported results from the model authors.")
305
+ else: # Single-image table
306
+ headers, data = si_loader.get_leaderboard_data(super_group, model_group)
307
+ caption = ("**Table 2: MEGA-Bench Single-image setting results.** The number in the parentheses is the number of tasks "
308
+ "in each keyword. <br> This subset contains 273 single-image tasks from the Core set and 42 single-image tasks from the Open-ended set. "
309
+ "For open-source models, we drop the image input in the 1-shot demonstration example so that the entire query contains a single image only. <br> "
310
+ "Compared to the default table, some models with only single-image support are added.")
311
+
312
+ dataframe = gr.Dataframe(
313
+ value=data,
314
+ headers=headers,
315
+ datatype=["number", "html"] + ["number"] * (len(headers) - 2),
316
+ interactive=True,
317
+ column_widths=["100px", "240px"] + ["160px"] * 3 + ["210px"] * (len(headers) - 5),
318
+ )
319
+ style_html = f"<style>{base_css}\n{table_css}</style>"
320
+ return dataframe, caption, style_html
321
 
322
+ def update_selectors(table_type):
323
+ """
324
+ Updates the options in the radio selectors based on the selected table type.
325
+ """
326
+ loader = default_loader if table_type == "Default" else si_loader
327
+ return [gr.Radio.update(choices=list(loader.SUPER_GROUPS.keys())),
328
+ gr.Radio.update(choices=list(loader.MODEL_GROUPS.keys()))]
329
+
330
+ def array_to_image_path(image_array):
331
+ """
332
+ Converts a NumPy image array to a PIL Image, saves it to disk, and returns its path.
333
+ """
334
+ img = Image.fromarray(np.uint8(image_array))
335
+ img.thumbnail((1024, 1024))
336
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
337
+ filename = f"image_{timestamp}.png"
338
+ img.save(filename)
339
+ return os.path.abspath(filename)
340
 
341
+ @spaces.GPU
342
+ def run_example(image, model_id="Qwen/Qwen2.5-VL-7B-Instruct", run_ner=False, ner_labels=DEFAULT_NER_LABELS):
343
+ """
344
+ Given an input image, uses the selected VL model to perform OCR (and optionally NER).
345
+ Returns the highlighted text and stores the raw OCR output in state.
346
+ """
347
+ text_input = "Convert the image to text."
348
+ image_path = array_to_image_path(image)
349
+
350
+ model = models[model_id]
351
+ processor = processors[model_id]
352
+
353
+ prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
354
+ image_pil = Image.fromarray(image).convert("RGB")
355
+ messages = [
356
+ {
357
+ "role": "user",
358
+ "content": [
359
+ {"type": "image", "image": image_path},
360
+ {"type": "text", "text": text_input},
361
+ ],
362
+ }
363
+ ]
364
+ # Prepare text and vision inputs
365
+ text_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
366
+ image_inputs, video_inputs = process_vision_info(messages)
367
+ inputs = processor(
368
+ text=[text_full],
369
+ images=image_inputs,
370
+ videos=video_inputs,
371
+ padding=True,
372
+ return_tensors="pt",
373
+ )
374
+ inputs = inputs.to("cuda")
375
+
376
+ # Generate model output
377
+ generated_ids = model.generate(**inputs, max_new_tokens=1024)
378
+ generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
379
+ output_text = processor.batch_decode(
380
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
381
+ )
382
+ ocr_text = output_text[0]
383
+
384
+ if run_ner:
385
+ ner_results = gliner_model.predict_entities(ocr_text, ner_labels.split(","), threshold=0.3)
386
+ highlighted_text = []
387
+ last_end = 0
388
+ for entity in sorted(ner_results, key=lambda x: x["start"]):
389
+ if last_end < entity["start"]:
390
+ highlighted_text.append((ocr_text[last_end:entity["start"]], None))
391
+ highlighted_text.append((ocr_text[entity["start"]:entity["end"]], entity["label"]))
392
+ last_end = entity["end"]
393
+ if last_end < len(ocr_text):
394
+ highlighted_text.append((ocr_text[last_end:], None))
395
+ result = TextWithMetadata(highlighted_text, original_text=ocr_text, entities=ner_results)
396
+ return result, result # one for display, one for state
397
+ result = TextWithMetadata([(ocr_text, None)], original_text=ocr_text, entities=[])
398
+ return result, result
399
 
400
+ def create_zip(image, fname, ocr_result):
401
+ """
402
+ Creates a zip file containing the saved image, the OCR text, and a JSON of the OCR output.
403
+ """
404
+ if not fname or image is None:
405
+ return None
406
+ try:
407
+ if isinstance(image, np.ndarray):
408
+ image_pil = Image.fromarray(image)
409
+ elif isinstance(image, Image.Image):
410
+ image_pil = image
411
+ else:
412
+ return None
413
+
414
+ with tempfile.TemporaryDirectory() as temp_dir:
415
+ img_path = os.path.join(temp_dir, f"{fname}.png")
416
+ image_pil.save(img_path)
417
 
418
+ original_text = ocr_result.original_text if ocr_result else ""
419
+ txt_path = os.path.join(temp_dir, f"{fname}.txt")
420
+ with open(txt_path, 'w', encoding='utf-8') as f:
421
+ f.write(original_text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422
 
423
+ json_data = {
424
+ "text": original_text,
425
+ "entities": ocr_result.entities if ocr_result else [],
426
+ "image_file": f"{fname}.png"
427
+ }
428
+ json_path = os.path.join(temp_dir, f"{fname}.json")
429
+ with open(json_path, 'w', encoding='utf-8') as f:
430
+ json.dump(json_data, f, indent=2, ensure_ascii=False)
431
+
432
+ output_dir = "downloads"
433
+ os.makedirs(output_dir, exist_ok=True)
434
+ zip_path = os.path.join(output_dir, f"{fname}.zip")
435
+ with zipfile.ZipFile(zip_path, 'w') as zipf:
436
+ zipf.write(img_path, os.path.basename(img_path))
437
+ zipf.write(txt_path, os.path.basename(txt_path))
438
+ zipf.write(json_path, os.path.basename(json_path))
439
+ return zip_path
440
+ except Exception as e:
441
+ print(f"Error creating zip: {str(e)}")
442
+ return None
443
 
444
+ # ----------------------------------------------------------------
445
+ # Launch the merged Gradio app
446
+ # ----------------------------------------------------------------
447
  if __name__ == "__main__":
448
+ demo.queue(api_open=False)
449
+ demo.launch(debug=True)