File size: 22,951 Bytes
59e84c0 755144a 59e84c0 755144a 59e84c0 3f8c47a 59e84c0 3f8c47a 59e84c0 3f8c47a 59e84c0 3f8c47a 59e84c0 b997fd9 76fafd3 b997fd9 3f8c47a b997fd9 59e84c0 a38b335 3f8c47a a38b335 59e84c0 3f8c47a 59e84c0 3f8c47a 59e84c0 454ffd3 59e84c0 3f8c47a 59e84c0 3f8c47a 59e84c0 3f8c47a 59e84c0 3f8c47a 59e84c0 3f8c47a 59e84c0 3f8c47a 59e84c0 7ed45f6 3f8c47a 7ed45f6 59e84c0 3f8c47a 59e84c0 3f8c47a 59e84c0 3f8c47a 59e84c0 3f8c47a 59e84c0 3f8c47a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
import streamlit as st
import base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
# -------------------- Configuration --------------------
st.set_page_config(
page_title="π²CCCGπ Code Competition Claude vs GPT",
page_icon="π²π",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "π²CCCGπ Code Competition Claude vs GPT"
}
)
load_dotenv()
# -------------------- Constants --------------------
USER_NAMES = [
"Aria", "Guy", "Sonia", "Tony", "Jenny", "Davis", "Libby", "Clara", "Liam", "Natasha", "William"
]
ENGLISH_VOICES = [
"en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural",
"en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural",
"en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural"
]
USER_VOICES = dict(zip(USER_NAMES, ENGLISH_VOICES))
FILE_EMOJIS = {
"md": "π",
"mp3": "π΅",
}
# -------------------- Session State Initialization --------------------
if 'user_name' not in st.session_state:
st.session_state['user_name'] = USER_NAMES[0]
if 'old_val' not in st.session_state:
st.session_state['old_val'] = None
if 'viewing_prefix' not in st.session_state:
st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'use_streaming' not in st.session_state:
st.session_state['use_streaming'] = True
# -------------------- Helper Functions --------------------
def get_high_info_terms(text: str) -> list:
stop_words = set([
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with',
'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were',
'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would',
'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these',
'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who',
'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most',
'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there', 'as', 'if', 'while'
])
key_phrases = [
'artificial intelligence', 'machine learning', 'deep learning', 'neural networks',
'natural language processing', 'healthcare systems', 'clinical medicine',
'genomics', 'biological systems', 'cognitive science', 'data visualization',
'wellness technology', 'robotics', 'medical imaging', 'semantic understanding',
'transformers', 'large language models', 'empirical studies', 'scientific research',
'quantum mechanics', 'biomedical engineering', 'computational biology'
]
preserved_phrases = []
lower_text = text.lower()
for phrase in key_phrases:
if phrase in lower_text:
preserved_phrases.append(phrase)
text = text.replace(phrase, '')
break
words = re.findall(r'\b\w+(?:-\w+)*\b', text)
high_info_words = [
word.lower() for word in words
if len(word) > 3
and word.lower() not in stop_words
and not word.isdigit()
and any(c.isalpha() for c in word)
]
unique_terms = []
seen = set()
for term in preserved_phrases + high_info_words:
if term not in seen:
seen.add(term)
unique_terms.append(term)
return unique_terms[:5]
def clean_text_for_filename(text: str) -> str:
text = text.lower()
text = re.sub(r'[^\w\s-]', '', text)
words = text.split()
stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about'])
filtered = [w for w in words if len(w)>3 and w not in stop_short]
return '_'.join(filtered)[:200]
def generate_filename(prompt, response, file_type="md"):
central_tz = pytz.timezone('America/Chicago')
central_time = datetime.now(central_tz)
prefix = central_time.strftime("%m-%d-%y_%I-%M-%p_")
combined = (prompt + " " + response).strip()
info_terms = get_high_info_terms(combined)
snippet = (prompt[:100] + " " + response[:100]).strip()
snippet_cleaned = clean_text_for_filename(snippet)
name_parts = info_terms + [snippet_cleaned]
full_name = '_'.join(name_parts)
if len(full_name) > 150:
full_name = full_name[:150]
filename = f"{prefix}{full_name}.{file_type}"
return filename
def create_file(prompt, response, file_type="md"):
filename = generate_filename(prompt.strip(), response.strip(), file_type)
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt + "\n\n" + response)
return filename
def get_download_link(file):
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">π Download {os.path.basename(file)}</a>'
def clean_for_speech(text: str) -> str:
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
# -------------------- Audio Functions --------------------
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
text = clean_for_speech(text)
if not text.strip():
return None
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
out_fn = generate_filename(text, text, "mp3")
try:
await communicate.save(out_fn)
except edge_tts.exceptions.NoAudioReceived:
st.error("No audio was received from TTS service.")
return None
return out_fn
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
def play_and_download_audio(file_path):
if file_path and os.path.exists(file_path):
st.audio(file_path)
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
st.markdown(dl_link, unsafe_allow_html=True)
# -------------------- File Management Functions --------------------
def load_files_for_sidebar():
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
groups = defaultdict(list)
for f in all_files:
fname = os.path.basename(f)
prefix = fname[:17]
groups[prefix].append(f)
for prefix in groups:
groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)
sorted_prefixes = sorted(groups.keys(),
key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]),
reverse=True)
return groups, sorted_prefixes
def extract_keywords_from_md(files):
text = ""
for f in files:
if f.endswith(".md"):
c = open(f,'r',encoding='utf-8').read()
text += " " + c
return get_high_info_terms(text)
def create_zip_of_files(md_files, mp3_files):
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
if not all_files:
return None
all_content = []
for f in all_files:
if f.endswith('.md'):
with open(f,'r',encoding='utf-8') as file:
all_content.append(file.read())
elif f.endswith('.mp3'):
all_content.append(os.path.basename(f))
combined_content = " ".join(all_content)
info_terms = get_high_info_terms(combined_content)
timestamp = datetime.now().strftime("%y%m_%H%M")
name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3])
zip_name = f"{timestamp}_{name_text}.zip"
with zipfile.ZipFile(zip_name,'w') as z:
for f in all_files:
z.write(f)
return zip_name
def display_file_manager_sidebar(groups, sorted_prefixes):
st.sidebar.title("π΅ Audio & Docs Manager")
all_md = []
all_mp3 = []
for prefix in groups:
for f in groups[prefix]:
if f.endswith(".md"):
all_md.append(f)
elif f.endswith(".mp3"):
all_mp3.append(f)
top_bar = st.sidebar.columns(3)
with top_bar[0]:
if st.button("π DelAllMD"):
for f in all_md:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[1]:
if st.button("π DelAllMP3"):
for f in all_mp3:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[2]:
if st.button("β¬οΈ ZipAll"):
z = create_zip_of_files(all_md, all_mp3)
if z:
st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True)
for prefix in sorted_prefixes:
files = groups[prefix]
kw = extract_keywords_from_md(files)
keywords_str = " ".join(kw) if kw else "No Keywords"
with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True):
c1,c2 = st.columns(2)
with c1:
if st.button("πViewGrp", key="view_group_"+prefix):
st.session_state.viewing_prefix = prefix
with c2:
if st.button("πDelGrp", key="del_group_"+prefix):
for f in files:
os.remove(f)
st.success(f"Deleted group {prefix}!")
st.session_state.should_rerun = True
for f in files:
fname = os.path.basename(f)
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
st.write(f"**{fname}** - {ctime}")
# -------------------- xAI API Functions --------------------
def call_xai_api_batch(query: str) -> dict:
"""
Call the xAI API in batch mode for complete responses.
"""
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('xai')}"
}
data = {
"messages": [
{
"role": "system",
"content": "You are a helpful scientific research assistant. Analyze the following research query and provide initial insights."
},
{
"role": "user",
"content": query
}
],
"model": "grok-2-1212",
"stream": False,
"temperature": 0.7
}
try:
response = requests.post(
"https://api.x.ai/v1/chat/completions",
headers=headers,
json=data,
timeout=30
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
st.error(f"Error in batch xAI API call: {str(e)}")
return None
def stream_xai_response(query: str, placeholder) -> str:
"""
Stream the xAI API response and display it in real-time.
Returns the complete response text.
"""
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('xai')}"
}
data = {
"messages": [
{
"role": "system",
"content": "You are a helpful scientific research assistant. Analyze the following research query and provide initial insights."
},
{
"role": "user",
"content": query
}
],
"model": "grok-2-1212",
"stream": True,
"temperature": 0.7
}
try:
response = requests.post(
"https://api.x.ai/v1/chat/completions",
headers=headers,
json=data,
stream=True,
timeout=30
)
response.raise_for_status()
full_response = ""
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
json_str = line[6:] # Remove 'data: ' prefix
if json_str == '[DONE]':
break
try:
chunk = json.loads(json_str)
if chunk["choices"][0]["delta"].get("content"):
content = chunk["choices"][0]["delta"]["content"]
full_response += content
# Update the placeholder with accumulated text
placeholder.markdown(full_response + "β")
except json.JSONDecodeError:
continue
# Final update without the cursor
placeholder.markdown(full_response)
return full_response
except requests.exceptions.RequestException as e:
st.error(f"Error in streaming xAI API call: {str(e)}")
return None
# -------------------- Main AI Lookup Function --------------------
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False, use_streaming=True):
"""Perform Arxiv search with initial xAI insights."""
start = time.time()
# First, get xAI insights
st.write("### π€ Initial AI Insights")
initial_insights = None
if use_streaming:
# Create a placeholder for streaming text
streaming_placeholder = st.empty()
with st.spinner("Getting streaming AI insights..."):
initial_insights = stream_xai_response(q, streaming_placeholder)
else:
with st.spinner("Getting batch AI insights..."):
xai_response = call_xai_api_batch(q)
if xai_response and 'choices' in xai_response:
initial_insights = xai_response['choices'][0]['message']['content']
st.markdown(initial_insights)
# Generate audio for xAI insights if enabled
if vocal_summary and initial_insights:
insights_text = clean_for_speech(initial_insights)
if insights_text.strip():
audio_file_insights = speak_with_edge_tts(insights_text)
if audio_file_insights:
st.write("### π€ AI Insights Audio")
play_and_download_audio(audio_file_insights)
# Proceed with existing ArXiv search
st.write("### π ArXiv Results")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = client.predict(q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0]
r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm")
result = f"### π {q}\n\n{r2}\n\n{refs}"
# Audio outputs
if full_audio:
complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}"
audio_file_full = speak_with_edge_tts(complete_text)
if audio_file_full:
st.write("### π Full Audio")
play_and_download_audio(audio_file_full)
if vocal_summary:
main_text = clean_for_speech(r2)
if main_text.strip():
audio_file_main = speak_with_edge_tts(main_text)
if audio_file_main:
st.write("### π Short Audio")
play_and_download_audio(audio_file_main)
if extended_refs:
summaries_text = "Extended references: " + refs.replace('"','')
summaries_text = clean_for_speech(summaries_text)
if summaries_text.strip():
audio_file_refs = speak_with_edge_tts(summaries_text)
if audio_file_refs:
st.write("### π Long Refs")
play_and_download_audio(audio_file_refs)
if titles_summary:
titles = []
for line in refs.split('\n'):
m = re.search(r"\[([^\]]+)\]", line)
if m:
titles.append(m.group(1))
if titles:
titles_text = "Titles: " + ", ".join(titles)
titles_text = clean_for_speech(titles_text)
if titles_text.strip():
audio_file_titles = speak_with_edge_tts(titles_text)
if audio_file_titles:
st.write("### π Titles")
play_and_download_audio(audio_file_titles)
st.markdown(result)
# Save complete results including xAI insights
if initial_insights:
full_result = f"### π€ Initial AI Insights\n\n{initial_insights}\n\n{result}"
else:
full_result = result
create_file(q, full_result, "md")
elapsed = time.time()-start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
return full_result
# -------------------- Main Application --------------------
def main():
st.session_state['user_name'] = st.selectbox("Current User:", USER_NAMES, index=0)
# Display saved files in sidebar
groups, sorted_prefixes = load_files_for_sidebar()
display_file_manager_sidebar(groups, sorted_prefixes)
if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
st.write("---")
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
for f in groups[st.session_state.viewing_prefix]:
fname = os.path.basename(f)
ext = os.path.splitext(fname)[1].lower().strip('.')
st.write(f"### {fname}")
if ext == "md":
content = open(f,'r',encoding='utf-8').read()
st.markdown(content)
elif ext == "mp3":
st.audio(f)
else:
st.markdown(get_download_link(f), unsafe_allow_html=True)
if st.button("β Close"):
st.session_state.viewing_prefix = None
if st.button("ποΈ Clear All History in Sidebar"):
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
for f in md_files+mp3_files:
os.remove(f)
st.success("All history cleared!")
st.rerun()
st.title("ποΈ ArXiv Voice Search")
# Voice component
mycomponent = components.declare_component("mycomponent", path="mycomponent")
voice_val = mycomponent(my_input_value="Start speaking...")
tabs = st.tabs(["π€ Voice Chat", "πΎ History", "βοΈ Settings"])
with tabs[0]:
st.subheader("π€ Voice Chat")
if voice_val:
voice_text = voice_val.strip()
input_changed = (voice_text != st.session_state.get('old_val'))
if input_changed and voice_text:
# Save user input
create_file(st.session_state['user_name'], voice_text, "md")
# Perform AI lookup with current streaming setting
with st.spinner("Processing..."):
result = perform_ai_lookup(
voice_text,
vocal_summary=True,
extended_refs=False,
titles_summary=True,
full_audio=False,
use_streaming=st.session_state['use_streaming']
)
st.session_state['old_val'] = voice_text
st.write("Speak a query to run an ArXiv search and hear the results.")
with tabs[1]:
st.subheader("πΎ History")
# Show all MD files and allow reading them aloud
md_files = sorted(glob.glob("*.md"), key=os.path.getmtime, reverse=True)
for i, fpath in enumerate(md_files, start=1):
fname = os.path.basename(fpath)
with open(fpath,'r',encoding='utf-8') as ff:
content = ff.read()
with st.expander(fname, expanded=False):
st.write(content)
if st.button(f"π Read Aloud {fname}", key=f"read_{i}_{fname}"):
voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural")
audio_file = speak_with_edge_tts(content, voice=voice)
if audio_file:
play_and_download_audio(audio_file)
if st.button("π Read Entire History"):
all_content = []
for fpath in sorted(md_files, key=os.path.getmtime):
with open(fpath,'r',encoding='utf-8') as ff:
c = ff.read().strip()
if c:
all_content.append((fpath, c))
mp3_files = []
for (fpath, text) in all_content:
voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural")
audio_file = speak_with_edge_tts(text, voice=voice)
if audio_file:
mp3_files.append(audio_file)
st.write(f"**{os.path.basename(fpath)}:**")
play_and_download_audio(audio_file)
if mp3_files:
combined_file = f"full_conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
with open(combined_file, 'wb') as outfile:
for f in mp3_files:
with open(f, 'rb') as infile:
outfile.write(infile.read())
st.write("**Full Conversation Audio:**")
play_and_download_audio(combined_file)
with tabs[2]:
st.subheader("βοΈ Settings")
st.session_state['use_streaming'] = st.toggle(
"Use streaming responses",
value=st.session_state['use_streaming'],
help="Enable to see AI responses as they are generated in real-time"
)
if st.session_state.should_rerun:
st.session_state.should_rerun = False
st.rerun()
if __name__ == "__main__":
main() |