import sys,os sys.path.append(os.path.dirname(os.path.abspath(__file__))) import torch import argparse import numpy as np from omegaconf import OmegaConf from scipy.io.wavfile import write from pitch import load_csv_pitch from vits.models import SynthesizerInfer from svc_inference import load_svc_model, svc_infer def main(args): if (args.ppg == None): args.ppg = "svc_tmp.ppg.npy" print( f"Auto run : python whisper/inference.py -w {args.wave} -p {args.ppg}") os.system(f"python whisper/inference.py -w {args.wave} -p {args.ppg}") if (args.vec == None): args.vec = "svc_tmp.vec.npy" print( f"Auto run : python hubert/inference.py -w {args.wave} -v {args.vec}") os.system(f"python hubert/inference.py -w {args.wave} -v {args.vec}") if (args.pit == None): args.pit = "svc_tmp.pit.csv" print( f"Auto run : python pitch/inference.py -w {args.wave} -p {args.pit}") os.system(f"python pitch/inference.py -w {args.wave} -p {args.pit}") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") hp = OmegaConf.load(args.config) model = SynthesizerInfer( hp.data.filter_length // 2 + 1, hp.data.segment_size // hp.data.hop_length, hp) load_svc_model(args.model, model) model.eval() model.to(device) spk = np.load(args.spk) spk = torch.FloatTensor(spk) ppg = np.load(args.ppg) ppg = np.repeat(ppg, 2, 0) ppg = torch.FloatTensor(ppg) vec = np.load(args.vec) vec = np.repeat(vec, 2, 0) vec = torch.FloatTensor(vec) pit = load_csv_pitch(args.pit) shift_l = args.shift_l shift_r = args.shift_r print(f"pitch shift: [{shift_l}, {shift_r}]") for shift in range(shift_l, shift_r + 1): print(shift) tmp = np.array(pit) tmp = tmp * (2 ** (shift / 12)) tmp = torch.FloatTensor(tmp) out_audio = svc_infer(model, spk, tmp, ppg, vec, hp, device) write(os.path.join("./_svc_out", f"svc_out_{shift}.wav"), hp.data.sampling_rate, out_audio) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, required=True, help="yaml file for config.") parser.add_argument('--model', type=str, required=True, help="path of model for evaluation") parser.add_argument('--wave', type=str, required=True, help="Path of raw audio.") parser.add_argument('--spk', type=str, required=True, help="Path of speaker.") parser.add_argument('--ppg', type=str, help="Path of content vector.") parser.add_argument('--vec', type=str, help="Path of hubert vector.") parser.add_argument('--pit', type=str, help="Path of pitch csv file.") parser.add_argument('--shift_l', type=int, default=0, help="Pitch shift key for [shift_l, shift_r]") parser.add_argument('--shift_r', type=int, default=0, help="Pitch shift key for [shift_l, shift_r]") args = parser.parse_args() assert args.shift_l >= -12 assert args.shift_r >= -12 assert args.shift_l <= 12 assert args.shift_r <= 12 assert args.shift_l <= args.shift_r os.makedirs("./_svc_out", exist_ok=True) main(args)