Spaces:
Running
Running
import sys,os | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
import numpy as np | |
import argparse | |
import torch | |
import random | |
from tqdm import tqdm | |
from whisper.model import Whisper, ModelDimensions | |
from whisper.audio import load_audio, pad_or_trim, log_mel_spectrogram | |
def load_model(path) -> Whisper: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
checkpoint = torch.load(path, map_location="cpu") | |
dims = ModelDimensions(**checkpoint["dims"]) | |
print(dims) | |
model = Whisper(dims) | |
del model.decoder | |
cut = len(model.encoder.blocks) // 4 | |
cut = -1 * cut | |
del model.encoder.blocks[cut:] | |
model.load_state_dict(checkpoint["model_state_dict"], strict=False) | |
model.eval() | |
model.half() | |
model.to(device) | |
return model | |
def pred_ppg(whisper: Whisper, wavPath, ppgPath): | |
audio = load_audio(wavPath) | |
audln = audio.shape[0] | |
ppgln = audln // 320 | |
audio = pad_or_trim(audio) | |
mel = log_mel_spectrogram(audio).half().to(whisper.device) | |
with torch.no_grad(): | |
ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy() | |
ppg = ppg[:ppgln,] # [length, dim=1280] | |
# print(ppg.shape) | |
np.save(ppgPath, ppg, allow_pickle=False) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-w", "--wav", help="wav", dest="wav", required=True) | |
parser.add_argument("-p", "--ppg", help="ppg", dest="ppg", required=True) | |
args = parser.parse_args() | |
print(args.wav) | |
print(args.ppg) | |
os.makedirs(args.ppg, exist_ok=True) | |
wavPath = args.wav | |
ppgPath = args.ppg | |
whisper = load_model(os.path.join("whisper_pretrain", "large-v2.pt")) | |
spkPaths = os.listdir(wavPath) | |
random.shuffle(spkPaths) | |
for spks in spkPaths: | |
if os.path.isdir(f"./{wavPath}/{spks}"): | |
os.makedirs(f"./{ppgPath}/{spks}", exist_ok=True) | |
files = [f for f in os.listdir(f"./{wavPath}/{spks}") if f.endswith(".wav")] | |
for file in tqdm(files, desc=f'Processing ppg {spks}'): | |
if file.endswith(".wav"): | |
# print(file) | |
file = file[:-4] | |
path_wav = f"{wavPath}/{spks}/{file}.wav" | |
path_ppg = f"{ppgPath}/{spks}/{file}.ppg" | |
if os.path.isfile(f"{path_ppg}.npy"): | |
continue | |
pred_ppg(whisper, path_wav, path_ppg) | |