Spaces:
Running
Running
import sys,os | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
import numpy as np | |
import librosa | |
import torch | |
import crepe | |
import argparse | |
from tqdm import tqdm | |
def compute_f0(filename, save, device): | |
audio, sr = librosa.load(filename, sr=16000) | |
assert sr == 16000 | |
# Load audio | |
audio = torch.tensor(np.copy(audio))[None] | |
audio = audio + torch.randn_like(audio) * 0.001 | |
# Here we'll use a 10 millisecond hop length | |
hop_length = 160 | |
# Provide a sensible frequency range for your domain (upper limit is 2006 Hz) | |
# This would be a reasonable range for speech | |
fmin = 50 | |
fmax = 1000 | |
# Select a model capacity--one of "tiny" or "full" | |
model = "full" | |
# Pick a batch size that doesn't cause memory errors on your gpu | |
batch_size = 512 | |
# Compute pitch using first gpu | |
pitch, periodicity = crepe.predict( | |
audio, | |
sr, | |
hop_length, | |
fmin, | |
fmax, | |
model, | |
batch_size=batch_size, | |
device=device, | |
return_periodicity=True, | |
) | |
# CREPE was not trained on silent audio. some error on silent need filter.pitPath | |
periodicity = crepe.filter.median(periodicity, 7) | |
pitch = crepe.filter.mean(pitch, 5) | |
pitch[periodicity < 0.5] = 0 | |
pitch = pitch.squeeze(0) | |
np.save(save, pitch, allow_pickle=False) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-w", "--wav", help="wav", dest="wav", required=True) | |
parser.add_argument("-p", "--pit", help="pit", dest="pit", required=True) | |
args = parser.parse_args() | |
print(args.wav) | |
print(args.pit) | |
os.makedirs(args.pit, exist_ok=True) | |
wavPath = args.wav | |
pitPath = args.pit | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
for spks in os.listdir(wavPath): | |
if os.path.isdir(f"./{wavPath}/{spks}"): | |
os.makedirs(f"./{pitPath}/{spks}", exist_ok=True) | |
files = [f for f in os.listdir(f"./{wavPath}/{spks}") if f.endswith(".wav")] | |
for file in tqdm(files, desc=f'Processing crepe {spks}'): | |
file = file[:-4] | |
compute_f0(f"{wavPath}/{spks}/{file}.wav", f"{pitPath}/{spks}/{file}.pit", device) | |