Spaces:
Running
Running
File size: 21,259 Bytes
827297f 9791162 827297f 9791162 827297f 9791162 827297f 9791162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
---
title: Whisper Vits SVC
emoji: π΅
python_version: 3.10.12
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.7.1
app_file: main.py
pinned: false
license: mit
---
<div align="center">
<h1> Variational Inference with adversarial learning for end-to-end Singing Voice Conversion based on VITS </h1>
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/maxmax20160403/sovits5.0)
<img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/PlayVoice/so-vits-svc-5.0">
<img alt="GitHub forks" src="https://img.shields.io/github/forks/PlayVoice/so-vits-svc-5.0">
<img alt="GitHub issues" src="https://img.shields.io/github/issues/PlayVoice/so-vits-svc-5.0">
<img alt="GitHub" src="https://img.shields.io/github/license/PlayVoice/so-vits-svc-5.0">
[δΈζζζ‘£](./README_ZH.md)
The tree [bigvgan-mix-v2](https://github.com/PlayVoice/whisper-vits-svc/tree/bigvgan-mix-v2) has good audio quality
The tree [RoFormer-HiFTNet](https://github.com/PlayVoice/whisper-vits-svc/tree/RoFormer-HiFTNet) has fast infer speed
No More Upgrade
</div>
- This project targets deep learning beginners, basic knowledge of Python and PyTorch are the prerequisites for this project;
- This project aims to help deep learning beginners get rid of boring pure theoretical learning, and master the basic knowledge of deep learning by combining it with practices;
- This project does not support real-time voice converting; (need to replace whisper if real-time voice converting is what you are looking for)
- This project will not develop one-click packages for other purposes;
![vits-5.0-frame](https://github.com/PlayVoice/so-vits-svc-5.0/assets/16432329/3854b281-8f97-4016-875b-6eb663c92466)
- A minimum VRAM requirement of 6GB for training
- Support for multiple speakers
- Create unique speakers through speaker mixing
- It can even convert voices with light accompaniment
- You can edit F0 using Excel
https://github.com/PlayVoice/so-vits-svc-5.0/assets/16432329/6a09805e-ab93-47fe-9a14-9cbc1e0e7c3a
Powered by [@ShadowVap](https://space.bilibili.com/491283091)
## Model properties
| Feature | From | Status | Function |
| :--- | :--- | :--- | :--- |
| whisper | OpenAI | β
| strong noise immunity |
| bigvgan | NVIDA | β
| alias and snake | The formant is clearer and the sound quality is obviously improved |
| natural speech | Microsoft | β
| reduce mispronunciation |
| neural source-filter | Xin Wang | β
| solve the problem of audio F0 discontinuity |
| pitch quantization | Xin Wang | β
| quantize the F0 for embedding |
| speaker encoder | Google | β
| Timbre Encoding and Clustering |
| GRL for speaker | Ubisoft |β
| Preventing Encoder Leakage Timbre |
| SNAC | Samsung | β
| One Shot Clone of VITS |
| SCLN | Microsoft | β
| Improve Clone |
| Diffusion | HuaWei | β
| Improve sound quality |
| PPG perturbation | this project | β
| Improved noise immunity and de-timbre |
| HuBERT perturbation | this project | β
| Improved noise immunity and de-timbre |
| VAE perturbation | this project | β
| Improve sound quality |
| MIX encoder | this project | β
| Improve conversion stability |
| USP infer | this project | β
| Improve conversion stability |
| HiFTNet | Columbia University | β
| NSF-iSTFTNet for speed up |
| RoFormer | Zhuiyi Technology | β
| Rotary Positional Embeddings |
due to the use of data perturbation, it takes longer to train than other projects.
**USP : Unvoice and Silence with Pitch when infer**
![vits_svc_usp](https://github.com/PlayVoice/so-vits-svc-5.0/assets/16432329/ba733b48-8a89-4612-83e0-a0745587d150)
## Why mix
![mix_frame](https://github.com/PlayVoice/whisper-vits-svc/assets/16432329/3ffa1be0-1a21-4752-96b5-6220f98f2313)
## Plug-In-Diffusion
![plug-in-diffusion](https://github.com/PlayVoice/so-vits-svc-5.0/assets/16432329/54a61c90-a97b-404d-9cc9-a2151b2db28f)
## Setup Environment
1. Install [PyTorch](https://pytorch.org/get-started/locally/).
2. Install project dependencies
```shell
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt
```
**Note: whisper is already built-in, do not install it again otherwise it will cuase conflict and error**
3. Download the Timbre Encoder: [Speaker-Encoder by @mueller91](https://drive.google.com/drive/folders/15oeBYf6Qn1edONkVLXe82MzdIi3O_9m3), put `best_model.pth.tar` into `speaker_pretrain/`.
4. Download whisper model [whisper-large-v2](https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt). Make sure to download `large-v2.pt`οΌput it into `whisper_pretrain/`.
5. Download [hubert_soft model](https://github.com/bshall/hubert/releases/tag/v0.1)οΌput `hubert-soft-0d54a1f4.pt` into `hubert_pretrain/`.
6. Download pitch extractor [crepe full](https://github.com/maxrmorrison/torchcrepe/tree/master/torchcrepe/assets)οΌput `full.pth` into `crepe/assets`.
**Note: crepe full.pth is 84.9 MB, not 6kb**
7. Download pretrain model [sovits5.0.pretrain.pth](https://github.com/PlayVoice/so-vits-svc-5.0/releases/tag/5.0/), and put it into `vits_pretrain/`.
```shell
python svc_inference.py --config configs/base.yaml --model ./vits_pretrain/sovits5.0.pretrain.pth --spk ./configs/singers/singer0001.npy --wave test.wav
```
## Dataset preparation
Necessary pre-processing:
1. Separate voice and accompaniment with [UVR](https://github.com/Anjok07/ultimatevocalremovergui) (skip if no accompaniment)
2. Cut audio input to shorter length with [slicer](https://github.com/flutydeer/audio-slicer), whisper takes input less than 30 seconds.
3. Manually check generated audio input, remove inputs shorter than 2 seconds or with obivous noise.
4. Adjust loudness if necessary, recommend Adobe Audiiton.
5. Put the dataset into the `dataset_raw` directory following the structure below.
```
dataset_raw
ββββspeaker0
β ββββ000001.wav
β ββββ...
β ββββ000xxx.wav
ββββspeaker1
ββββ000001.wav
ββββ...
ββββ000xxx.wav
```
## Data preprocessing
```shell
python svc_preprocessing.py -t 2
```
`-t`: threading, max number should not exceed CPU core count, usually 2 is enough.
After preprocessing you will get an output with following structure.
```
data_svc/
βββ waves-16k
β βββ speaker0
β β βββ 000001.wav
β β βββ 000xxx.wav
β βββ speaker1
β βββ 000001.wav
β βββ 000xxx.wav
βββ waves-32k
β βββ speaker0
β β βββ 000001.wav
β β βββ 000xxx.wav
β βββ speaker1
β βββ 000001.wav
β βββ 000xxx.wav
βββ pitch
β βββ speaker0
β β βββ 000001.pit.npy
β β βββ 000xxx.pit.npy
β βββ speaker1
β βββ 000001.pit.npy
β βββ 000xxx.pit.npy
βββ hubert
β βββ speaker0
β β βββ 000001.vec.npy
β β βββ 000xxx.vec.npy
β βββ speaker1
β βββ 000001.vec.npy
β βββ 000xxx.vec.npy
βββ whisper
β βββ speaker0
β β βββ 000001.ppg.npy
β β βββ 000xxx.ppg.npy
β βββ speaker1
β βββ 000001.ppg.npy
β βββ 000xxx.ppg.npy
βββ speaker
β βββ speaker0
β β βββ 000001.spk.npy
β β βββ 000xxx.spk.npy
β βββ speaker1
β βββ 000001.spk.npy
β βββ 000xxx.spk.npy
βββ singer
β βββ speaker0.spk.npy
β βββ speaker1.spk.npy
|
βββ indexes
βββ speaker0
β βββ some_prefix_hubert.index
β βββ some_prefix_whisper.index
βββ speaker1
βββ hubert.index
βββ whisper.index
```
1. Re-sampling
- Generate audio with a sampling rate of 16000Hz in `./data_svc/waves-16k`
```
python prepare/preprocess_a.py -w ./dataset_raw -o ./data_svc/waves-16k -s 16000
```
- Generate audio with a sampling rate of 32000Hz in `./data_svc/waves-32k`
```
python prepare/preprocess_a.py -w ./dataset_raw -o ./data_svc/waves-32k -s 32000
```
2. Use 16K audio to extract pitch
```
python prepare/preprocess_crepe.py -w data_svc/waves-16k/ -p data_svc/pitch
```
3. Use 16K audio to extract ppg
```
python prepare/preprocess_ppg.py -w data_svc/waves-16k/ -p data_svc/whisper
```
4. Use 16K audio to extract hubert
```
python prepare/preprocess_hubert.py -w data_svc/waves-16k/ -v data_svc/hubert
```
5. Use 16k audio to extract timbre code
```
python prepare/preprocess_speaker.py data_svc/waves-16k/ data_svc/speaker
```
6. Extract the average value of the timbre code for inference; it can also replace a single audio timbre in generating the training index, and use it as the unified timbre of the speaker for training
```
python prepare/preprocess_speaker_ave.py data_svc/speaker/ data_svc/singer
```
7. Use 32k audio to extract the linear spectrum
```
python prepare/preprocess_spec.py -w data_svc/waves-32k/ -s data_svc/specs
```
8. Use 32k audio to generate training index
```
python prepare/preprocess_train.py
```
11. Training file debugging
```
python prepare/preprocess_zzz.py
```
## Train
1. If fine-tuning is based on the pre-trained model, you need to download the pre-trained model: [sovits5.0.pretrain.pth](https://github.com/PlayVoice/so-vits-svc-5.0/releases/tag/5.0). Put pretrained model under project root, change this line
```
pretrain: "./vits_pretrain/sovits5.0.pretrain.pth"
```
in `configs/base.yaml`οΌand adjust the learning rate appropriately, eg 5e-5.
`batch_size`: for GPU with 6G VRAM, 6 is the recommended value, 8 will work but step speed will be much slower.
2. Start training
```
python svc_trainer.py -c configs/base.yaml -n sovits5.0
```
3. Resume training
```
python svc_trainer.py -c configs/base.yaml -n sovits5.0 -p chkpt/sovits5.0/sovits5.0_***.pt
```
4. Log visualization
```
tensorboard --logdir logs/
```
![sovits5 0_base](https://github.com/PlayVoice/so-vits-svc-5.0/assets/16432329/1628e775-5888-4eac-b173-a28dca978faa)
![sovits_spec](https://github.com/PlayVoice/so-vits-svc-5.0/assets/16432329/c4223cf3-b4a0-4325-bec0-6d46d195a1fc)
## Inference
1. Export inference model: text encoder, Flow network, Decoder network
```
python svc_export.py --config configs/base.yaml --checkpoint_path chkpt/sovits5.0/***.pt
```
2. Inference
- if there is no need to adjust `f0`, just run the following command.
```
python svc_inference.py --config configs/base.yaml --model sovits5.0.pth --spk ./data_svc/singer/your_singer.spk.npy --wave test.wav --shift 0
```
- if `f0` will be adjusted manually, follow the steps:
1. use whisper to extract content encoding, generate `test.vec.npy`.
```
python whisper/inference.py -w test.wav -p test.ppg.npy
```
2. use hubert to extract content vector, without using one-click reasoning, in order to reduce GPU memory usage
```
python hubert/inference.py -w test.wav -v test.vec.npy
```
3. extract the F0 parameter to the csv text format, open the csv file in Excel, and manually modify the wrong F0 according to Audition or SonicVisualiser
```
python pitch/inference.py -w test.wav -p test.csv
```
4. final inference
```
python svc_inference.py --config configs/base.yaml --model sovits5.0.pth --spk ./data_svc/singer/your_singer.spk.npy --wave test.wav --ppg test.ppg.npy --vec test.vec.npy --pit test.csv --shift 0
```
3. Notes
- when `--ppg` is specified, when the same audio is reasoned multiple times, it can avoid repeated extraction of audio content codes; if it is not specified, it will be automatically extracted;
- when `--vec` is specified, when the same audio is reasoned multiple times, it can avoid repeated extraction of audio content codes; if it is not specified, it will be automatically extracted;
- when `--pit` is specified, the manually tuned F0 parameter can be loaded; if not specified, it will be automatically extracted;
- generate files in the current directory:svc_out.wav
4. Arguments ref
| args |--config | --model | --spk | --wave | --ppg | --vec | --pit | --shift |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| name | config path | model path | speaker | wave input | wave ppg | wave hubert | wave pitch | pitch shift |
5. post by vad
```
python svc_inference_post.py --ref test.wav --svc svc_out.wav --out svc_out_post.wav
```
## Train Feature Retrieval Index (Optional)
To increase the stability of the generated timbre, you can use the method described in the
[Retrieval-based-Voice-Conversion](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/docs/en/README.en.md)
repository. This method consists of 2 steps:
1. Training the retrieval index on hubert and whisper features
Run training with default settings:
```
python svc_train_retrieval.py
```
If the number of vectors is more than 200_000 they will be compressed to 10_000 using the MiniBatchKMeans algorithm.
You can change these settings using command line options:
```
usage: crate faiss indexes for feature retrieval [-h] [--debug] [--prefix PREFIX] [--speakers SPEAKERS [SPEAKERS ...]] [--compress-features-after COMPRESS_FEATURES_AFTER]
[--n-clusters N_CLUSTERS] [--n-parallel N_PARALLEL]
options:
-h, --help show this help message and exit
--debug
--prefix PREFIX add prefix to index filename
--speakers SPEAKERS [SPEAKERS ...]
speaker names to create an index. By default all speakers are from data_svc
--compress-features-after COMPRESS_FEATURES_AFTER
If the number of features is greater than the value compress feature vectors using MiniBatchKMeans.
--n-clusters N_CLUSTERS
Number of centroids to which features will be compressed
--n-parallel N_PARALLEL
Nuber of parallel job of MinibatchKmeans. Default is cpus-1
```
Compression of training vectors can speed up index inference, but reduces the quality of the retrieve.
Use vector count compression if you really have a lot of them.
The resulting indexes will be stored in the "indexes" folder as:
```
data_svc
...
βββ indexes
βββ speaker0
β βββ some_prefix_hubert.index
β βββ some_prefix_whisper.index
βββ speaker1
βββ hubert.index
βββ whisper.index
```
2. At the inference stage adding the n closest features in a certain proportion of the vits model
Enable Feature Retrieval with settings:
```
python svc_inference.py --config configs/base.yaml --model sovits5.0.pth --spk ./data_svc/singer/your_singer.spk.npy --wave test.wav --shift 0 \
--enable-retrieval \
--retrieval-ratio 0.5 \
--n-retrieval-vectors 3
```
For a better retrieval effect, you can try to cycle through different parameters: `--retrieval-ratio` and `--n-retrieval-vectors`
If you have multiple sets of indexes, you can specify a specific set via the parameter: `--retrieval-index-prefix`
You can explicitly specify the paths to the hubert and whisper indexes using the parameters: `--hubert-index-path` and `--whisper-index-path`
## Create singer
named by pure coincidenceοΌaverage -> ave -> evaοΌeve(eva) represents conception and reproduction
```
python svc_eva.py
```
```python
eva_conf = {
'./configs/singers/singer0022.npy': 0,
'./configs/singers/singer0030.npy': 0,
'./configs/singers/singer0047.npy': 0.5,
'./configs/singers/singer0051.npy': 0.5,
}
```
the generated singer file will be `eva.spk.npy`.
## Data set
| Name | URL |
| :--- | :--- |
|KiSing |http://shijt.site/index.php/2021/05/16/kising-the-first-open-source-mandarin-singing-voice-synthesis-corpus/|
|PopCS |https://github.com/MoonInTheRiver/DiffSinger/blob/master/resources/apply_form.md|
|opencpop |https://wenet.org.cn/opencpop/download/|
|Multi-Singer |https://github.com/Multi-Singer/Multi-Singer.github.io|
|M4Singer |https://github.com/M4Singer/M4Singer/blob/master/apply_form.md|
|CSD |https://zenodo.org/record/4785016#.YxqrTbaOMU4|
|KSS |https://www.kaggle.com/datasets/bryanpark/korean-single-speaker-speech-dataset|
|JVS MuSic |https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_music|
|PJS |https://sites.google.com/site/shinnosuketakamichi/research-topics/pjs_corpus|
|JUST Song |https://sites.google.com/site/shinnosuketakamichi/publication/jsut-song|
|MUSDB18 |https://sigsep.github.io/datasets/musdb.html#musdb18-compressed-stems|
|DSD100 |https://sigsep.github.io/datasets/dsd100.html|
|Aishell-3 |http://www.aishelltech.com/aishell_3|
|VCTK |https://datashare.ed.ac.uk/handle/10283/2651|
|Korean Songs |http://urisori.co.kr/urisori-en/doku.php/|
## Code sources and references
https://github.com/facebookresearch/speech-resynthesis [paper](https://arxiv.org/abs/2104.00355)
https://github.com/jaywalnut310/vits [paper](https://arxiv.org/abs/2106.06103)
https://github.com/openai/whisper/ [paper](https://arxiv.org/abs/2212.04356)
https://github.com/NVIDIA/BigVGAN [paper](https://arxiv.org/abs/2206.04658)
https://github.com/mindslab-ai/univnet [paper](https://arxiv.org/abs/2106.07889)
https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts/tree/master/project/01-nsf
https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS
https://github.com/brentspell/hifi-gan-bwe
https://github.com/mozilla/TTS
https://github.com/bshall/soft-vc
https://github.com/maxrmorrison/torchcrepe
https://github.com/MoonInTheRiver/DiffSinger
https://github.com/OlaWod/FreeVC [paper](https://arxiv.org/abs/2210.15418)
https://github.com/yl4579/HiFTNet [paper](https://arxiv.org/abs/2309.09493)
[Autoregressive neural f0 model for statistical parametric speech synthesis](https://web.archive.org/web/20210718024752id_/https://ieeexplore.ieee.org/ielx7/6570655/8356719/08341752.pdf)
[One-shot Voice Conversion by Separating Speaker and Content Representations with Instance Normalization](https://arxiv.org/abs/1904.05742)
[SNAC : Speaker-normalized Affine Coupling Layer in Flow-based Architecture for Zero-Shot Multi-Speaker Text-to-Speech](https://github.com/hcy71o/SNAC)
[Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers](https://arxiv.org/abs/2211.00585)
[AdaSpeech: Adaptive Text to Speech for Custom Voice](https://arxiv.org/pdf/2103.00993.pdf)
[AdaVITS: Tiny VITS for Low Computing Resource Speaker Adaptation](https://arxiv.org/pdf/2206.00208.pdf)
[Cross-Speaker Prosody Transfer on Any Text for Expressive Speech Synthesis](https://github.com/ubisoft/ubisoft-laforge-daft-exprt)
[Learn to Sing by Listening: Building Controllable Virtual Singer by Unsupervised Learning from Voice Recordings](https://arxiv.org/abs/2305.05401)
[Adversarial Speaker Disentanglement Using Unannotated External Data for Self-supervised Representation Based Voice Conversion](https://arxiv.org/pdf/2305.09167.pdf)
[Multilingual Speech Synthesis and Cross-Language Voice Cloning: GRL](https://arxiv.org/abs/1907.04448)
[RoFormer: Enhanced Transformer with rotary position embedding](https://arxiv.org/abs/2104.09864)
## Method of Preventing Timbre Leakage Based on Data Perturbation
https://github.com/auspicious3000/contentvec/blob/main/contentvec/data/audio/audio_utils_1.py
https://github.com/revsic/torch-nansy/blob/main/utils/augment/praat.py
https://github.com/revsic/torch-nansy/blob/main/utils/augment/peq.py
https://github.com/biggytruck/SpeechSplit2/blob/main/utils.py
https://github.com/OlaWod/FreeVC/blob/main/preprocess_sr.py
## Contributors
<a href="https://github.com/PlayVoice/so-vits-svc/graphs/contributors">
<img src="https://contrib.rocks/image?repo=PlayVoice/so-vits-svc" />
</a>
## Thanks to
https://github.com/Francis-Komizu/Sovits
## Relevant Projects
- [LoRA-SVC](https://github.com/PlayVoice/lora-svc): decoder only svc
- [Grad-SVC](https://github.com/PlayVoice/Grad-SVC): diffusion based svc
## Original evidence
2022.04.12 https://mp.weixin.qq.com/s/autNBYCsG4_SvWt2-Ll_zA
2022.04.22 https://github.com/PlayVoice/VI-SVS
2022.07.26 https://mp.weixin.qq.com/s/qC4TJy-4EVdbpvK2cQb1TA
2022.09.08 https://github.com/PlayVoice/VI-SVC
## Be copied by svc-develop-team/so-vits-svc
![coarse_f0_1](https://github.com/PlayVoice/so-vits-svc-5.0/assets/16432329/e2f5e5d3-d169-42c1-953f-4e1648b6da37)
|