Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,10 @@ os.system('pip install transformers')
|
|
3 |
# Import the necessary libraries
|
4 |
import os
|
5 |
os.system('pip install torch')
|
6 |
-
|
7 |
-
from transformers import AutoModel, AutoTokenizer
|
8 |
-
import torch
|
9 |
-
|
10 |
from transformers import AutoModel, AutoTokenizer
|
11 |
import torch
|
12 |
from torch.utils.data import DataLoader, Dataset
|
13 |
from sklearn.model_selection import train_test_split
|
14 |
-
from google.colab import files
|
15 |
import pandas as pd
|
16 |
import gradio as gr
|
17 |
|
@@ -19,25 +14,12 @@ import gradio as gr
|
|
19 |
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
20 |
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
21 |
|
22 |
-
#
|
23 |
-
uploaded = files.upload()
|
24 |
-
|
25 |
-
# Load the dataset
|
26 |
-
filename = next(iter(uploaded)) # Automatically get the first uploaded file's name
|
27 |
-
df = pd.read_excel(filename) # Read the uploaded Excel file
|
28 |
-
|
29 |
-
# Display the columns in the uploaded DataFrame to help identify correct names
|
30 |
-
print("Columns in the dataset:", df.columns.tolist())
|
31 |
-
|
32 |
-
# Function to search by name and return the PEC number
|
33 |
def search_by_name(name):
|
34 |
-
|
35 |
-
|
36 |
-
return f"Your PEC number: {name_matches['PEC No'].values[0]}"
|
37 |
-
else:
|
38 |
-
return "No matches found for your name."
|
39 |
|
40 |
-
# Gradio interface
|
41 |
iface = gr.Interface(
|
42 |
fn=search_by_name,
|
43 |
inputs=gr.Textbox(label="Please write your Name"),
|
@@ -46,7 +28,6 @@ iface = gr.Interface(
|
|
46 |
description="Enter your name to find your PEC number."
|
47 |
)
|
48 |
|
49 |
-
# Launch the
|
50 |
iface.launch()
|
51 |
|
52 |
-
|
|
|
3 |
# Import the necessary libraries
|
4 |
import os
|
5 |
os.system('pip install torch')
|
|
|
|
|
|
|
|
|
6 |
from transformers import AutoModel, AutoTokenizer
|
7 |
import torch
|
8 |
from torch.utils.data import DataLoader, Dataset
|
9 |
from sklearn.model_selection import train_test_split
|
|
|
10 |
import pandas as pd
|
11 |
import gradio as gr
|
12 |
|
|
|
14 |
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
15 |
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
16 |
|
17 |
+
# Example Gradio function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def search_by_name(name):
|
19 |
+
# Your logic to search by name and return a response
|
20 |
+
pass
|
|
|
|
|
|
|
21 |
|
22 |
+
# Gradio interface
|
23 |
iface = gr.Interface(
|
24 |
fn=search_by_name,
|
25 |
inputs=gr.Textbox(label="Please write your Name"),
|
|
|
28 |
description="Enter your name to find your PEC number."
|
29 |
)
|
30 |
|
31 |
+
# Launch the interface
|
32 |
iface.launch()
|
33 |
|
|