Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import supervision as sv
|
3 |
+
import PIL.Image as Image
|
4 |
+
from ultralytics import YOLO
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
model_filenames = [
|
11 |
+
"yolo11n.pt",
|
12 |
+
"yolo11s.pt",
|
13 |
+
"yolo11m.pt",
|
14 |
+
"yolo11l.pt",
|
15 |
+
"yolo11x.pt"
|
16 |
+
]
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
box_annotator = sv.BoxAnnotator()
|
21 |
+
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
|
22 |
+
9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q',
|
23 |
+
17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'}
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
@spaces.GPU
|
28 |
+
def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection):
|
29 |
+
# Download models
|
30 |
+
|
31 |
+
|
32 |
+
model = YOLO(model_id)
|
33 |
+
results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
|
34 |
+
detections = sv.Detections.from_ultralytics(results)
|
35 |
+
|
36 |
+
labels = [
|
37 |
+
f"{category_dict[class_id]} {confidence:.2f}"
|
38 |
+
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
39 |
+
]
|
40 |
+
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
|
41 |
+
|
42 |
+
return annotated_image
|
43 |
+
|
44 |
+
def app():
|
45 |
+
with gr.Blocks():
|
46 |
+
with gr.Row():
|
47 |
+
with gr.Column():
|
48 |
+
image = gr.Image(type="pil", label="Image", interactive=True)
|
49 |
+
|
50 |
+
model_id = gr.Dropdown(
|
51 |
+
label="Model",
|
52 |
+
choices=model_filenames,
|
53 |
+
value=model_filenames[0] if model_filenames else "",
|
54 |
+
)
|
55 |
+
conf_threshold = gr.Slider(
|
56 |
+
label="Confidence Threshold",
|
57 |
+
minimum=0.1,
|
58 |
+
maximum=1.0,
|
59 |
+
step=0.1,
|
60 |
+
value=0.25,
|
61 |
+
)
|
62 |
+
iou_threshold = gr.Slider(
|
63 |
+
label="IoU Threshold",
|
64 |
+
minimum=0.1,
|
65 |
+
maximum=1.0,
|
66 |
+
step=0.1,
|
67 |
+
value=0.45,
|
68 |
+
)
|
69 |
+
|
70 |
+
max_detection = gr.Slider(
|
71 |
+
label="Max Detection",
|
72 |
+
minimum=1,
|
73 |
+
step=1,
|
74 |
+
value=1,
|
75 |
+
)
|
76 |
+
yolov_infer = gr.Button(value="Detect Objects")
|
77 |
+
|
78 |
+
with gr.Column():
|
79 |
+
output_image = gr.Image(type="pil", label="Annotated Image", interactive=False)
|
80 |
+
|
81 |
+
yolov_infer.click(
|
82 |
+
fn=yolo_inference,
|
83 |
+
inputs=[
|
84 |
+
image,
|
85 |
+
model_id,
|
86 |
+
conf_threshold,
|
87 |
+
iou_threshold,
|
88 |
+
max_detection,
|
89 |
+
],
|
90 |
+
outputs=[output_image],
|
91 |
+
)
|
92 |
+
|
93 |
+
gr.Examples(
|
94 |
+
examples=[
|
95 |
+
[
|
96 |
+
"zidane.jpg",
|
97 |
+
"yolov11x.pt",
|
98 |
+
0.25,
|
99 |
+
0.45,
|
100 |
+
1,
|
101 |
+
],
|
102 |
+
|
103 |
+
[
|
104 |
+
"bus.jpg",
|
105 |
+
"yolov11s.pt",
|
106 |
+
0.25,
|
107 |
+
0.45,
|
108 |
+
1,
|
109 |
+
],
|
110 |
+
[
|
111 |
+
"yolo_vision.jpg",
|
112 |
+
"yolov11m.pt",
|
113 |
+
0.25,
|
114 |
+
0.45,
|
115 |
+
1,
|
116 |
+
],
|
117 |
+
],
|
118 |
+
fn=yolo_inference,
|
119 |
+
inputs=[
|
120 |
+
image,
|
121 |
+
model_id,
|
122 |
+
conf_threshold,
|
123 |
+
iou_threshold,
|
124 |
+
max_detection,
|
125 |
+
],
|
126 |
+
outputs=[output_image],
|
127 |
+
cache_examples="lazy",
|
128 |
+
)
|
129 |
+
|
130 |
+
gradio_app = gr.Blocks()
|
131 |
+
with gradio_app:
|
132 |
+
gr.HTML(
|
133 |
+
"""
|
134 |
+
<h1 style='text-align: center'>
|
135 |
+
Yolov11
|
136 |
+
</h1>
|
137 |
+
""")
|
138 |
+
with gr.Row():
|
139 |
+
with gr.Column():
|
140 |
+
app()
|
141 |
+
|
142 |
+
gradio_app.launch()
|