import streamlit as st from langchain.llms import HuggingFaceHub from langchain import PromptTemplate, LLMChain ## Function to return the response using the HuggingFace Model def load_answer(question): # Initialize the HuggingFaceHub LLM llm = HuggingFaceHub( repo_id="google/flan-t5-large", # huggingfacehub_api_token="", model_kwargs={"temperature": 0} ) # Create a prompt template for the question template = PromptTemplate(input_variables=["question"], template="{question}") llm_chain = LLMChain(prompt=template, llm=llm) # Generate the answer using the LLM chain answer = llm_chain.run(question) return answer # App UI starts here st.set_page_config(page_title="LangChain Demo", page_icon=":robot:") st.header("LangChain Demo") # Gets the user input def get_text(): input_text = st.text_input("You: ", key="input") return input_text user_input = get_text() submit = st.button('Generate') # If generate button is clicked if submit and user_input: response = load_answer(user_input) st.subheader("Answer:") st.write(response)