add @spaces.GPU
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
import cv2
|
3 |
import time
|
4 |
import torch
|
|
|
5 |
import subprocess
|
6 |
import numpy as np
|
7 |
import gradio as gr
|
@@ -292,6 +293,7 @@ class GradioWindow():
|
|
292 |
self.concatenated_masks = res
|
293 |
return res, current_object, True
|
294 |
|
|
|
295 |
def detect(self, image: Image, prompt: str, is_segmmask: bool,
|
296 |
box_threshold: float, text_threshold: float):
|
297 |
detections = self.grounding_dino_model.predict_with_classes(
|
@@ -362,6 +364,7 @@ class GradioWindow():
|
|
362 |
image = cv2.addWeighted(image, 0.7, mask, 0.3, 0)
|
363 |
return image
|
364 |
|
|
|
365 |
def segment(self, sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray:
|
366 |
sam_predictor.set_image(image)
|
367 |
result_masks = []
|
@@ -374,6 +377,7 @@ class GradioWindow():
|
|
374 |
result_masks.append(masks[index])
|
375 |
return np.array(result_masks)
|
376 |
|
|
|
377 |
def augment_image(self, image: Image,
|
378 |
current_object: str, new_objects_list: str,
|
379 |
ddim_steps: int, guidance_scale: int, seed: int, return_prompt: str) -> tuple:
|
|
|
2 |
import cv2
|
3 |
import time
|
4 |
import torch
|
5 |
+
import spaces
|
6 |
import subprocess
|
7 |
import numpy as np
|
8 |
import gradio as gr
|
|
|
293 |
self.concatenated_masks = res
|
294 |
return res, current_object, True
|
295 |
|
296 |
+
@spaces.GPU
|
297 |
def detect(self, image: Image, prompt: str, is_segmmask: bool,
|
298 |
box_threshold: float, text_threshold: float):
|
299 |
detections = self.grounding_dino_model.predict_with_classes(
|
|
|
364 |
image = cv2.addWeighted(image, 0.7, mask, 0.3, 0)
|
365 |
return image
|
366 |
|
367 |
+
@spaces.GPU
|
368 |
def segment(self, sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray:
|
369 |
sam_predictor.set_image(image)
|
370 |
result_masks = []
|
|
|
377 |
result_masks.append(masks[index])
|
378 |
return np.array(result_masks)
|
379 |
|
380 |
+
@spaces.GPU
|
381 |
def augment_image(self, image: Image,
|
382 |
current_object: str, new_objects_list: str,
|
383 |
ddim_steps: int, guidance_scale: int, seed: int, return_prompt: str) -> tuple:
|