#!/usr/bin/env python import os import pathlib import tempfile import gradio as gr import torch from huggingface_hub import snapshot_download from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline DESCRIPTION = "# ModelScope-Vid2Vid-XL" if torch.cuda.is_available(): model_cache_dir = os.getenv("MODEL_CACHE_DIR", "./models") model_dir = pathlib.Path(model_cache_dir) / "MS-Vid2Vid-XL" snapshot_download(repo_id="damo-vilab/MS-Vid2Vid-XL", repo_type="model", local_dir=model_dir) pipe = pipeline(task="video-to-video", model=model_dir.as_posix(), model_revision="v1.1.0", device="cuda:0") else: pipe = None def video_to_video(video_path: str, text: str) -> str: p_input = {"video_path": video_path, "text": text} output_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) pipe(p_input, output_video=output_file.name)[OutputKeys.OUTPUT_VIDEO] return output_file.name with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) input_video = gr.Video(label="Input video", type="filepath") text_description = gr.Textbox(label="Text description") run_button = gr.Button() output_video = gr.Video(label="Output video") run_button.click( fn=video_to_video, inputs=[input_video, text_description], outputs=output_video, api_name="run", ) demo.queue(max_size=20).launch()