postometro-free-demo / main /postometro_utils /positional_encoding.py
imabackstabber
test postometro pipeline
0a34307
raw
history blame
2.67 kB
# ----------------------------------------------------------------------------------------------
# FastMETRO Official Code
# Copyright (c) POSTECH Algorithmic Machine Intelligence Lab. (P-AMI Lab.) All Rights Reserved
# Licensed under the MIT license.
# ----------------------------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved [see https://github.com/facebookresearch/detr/blob/main/LICENSE for details]
# ----------------------------------------------------------------------------------------------
import math
import torch
from torch import nn
class PositionEmbeddingSine(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, bs, h, w, device):
ones = torch.ones((bs, h, w), dtype=torch.bool, device=device)
y_embed = ones.cumsum(1, dtype=torch.float32)
x_embed = ones.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=device)
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.num_pos_feats) # cancel warning
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
def build_position_encoding(pos_type, hidden_dim):
N_steps = hidden_dim // 2
if pos_type == 'sine':
position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
else:
raise ValueError("not supported {pos_type}")
return position_embedding