Spaces:
Sleeping
Sleeping
File size: 15,216 Bytes
0a34307 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# ----------------------------------------------------------------------------------------------
# FastMETRO Official Code
# Copyright (c) POSTECH Algorithmic Machine Intelligence Lab. (P-AMI Lab.) All Rights Reserved
# Licensed under the MIT license.
# ----------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------
# PostoMETRO Official Code
# Copyright (c) MIRACLE Lab. All Rights Reserved
# Licensed under the MIT license.
# ----------------------------------------------------------------------------------------------
from __future__ import absolute_import, division, print_function
import torch
import numpy as np
import argparse
import os
import os.path as osp
from torch import nn
from postometro_utils.smpl import Mesh
from postometro_utils.transformer import build_transformer
from postometro_utils.positional_encoding import build_position_encoding
from postometro_utils.modules import FCBlock, MixerLayer
from pct_utils.pct import PCT
from pct_utils.pct_backbone import SwinV2TransformerRPE2FC
from postometro_utils.pose_resnet import get_pose_net as get_pose_resnet
from postometro_utils.pose_resnet_config import config as resnet_config
from postometro_utils.pose_hrnet import get_pose_hrnet
from postometro_utils.pose_hrnet_config import _C as hrnet_config
from postometro_utils.pose_hrnet_config import update_config as hrnet_update_config
CUR_DIR = osp.dirname(os.path.abspath(__file__))
class PostoMETRO(nn.Module):
"""PostoMETRO for 3D human pose and mesh reconstruction from a single RGB image"""
def __init__(self, args, backbone, mesh_sampler, pct = None, num_joints=14, num_vertices=431):
"""
Parameters:
- args: Arguments
- backbone: CNN Backbone used to extract image features from the given image
- mesh_sampler: Mesh Sampler used in the coarse-to-fine mesh upsampling
- num_joints: The number of joint tokens used in the transformer decoder
- num_vertices: The number of vertex tokens used in the transformer decoder
"""
super().__init__()
self.args = args
self.backbone = backbone
self.mesh_sampler = mesh_sampler
self.num_joints = num_joints
self.num_vertices = num_vertices
# the number of transformer layers, set to default
num_enc_layers = 3
num_dec_layers = 3
# configurations for the first transformer
self.transformer_config_1 = {"model_dim": args.model_dim_1, "dropout": args.transformer_dropout, "nhead": args.transformer_nhead,
"feedforward_dim": args.feedforward_dim_1, "num_enc_layers": num_enc_layers, "num_dec_layers": num_dec_layers,
"pos_type": args.pos_type}
# configurations for the second transformer
self.transformer_config_2 = {"model_dim": args.model_dim_2, "dropout": args.transformer_dropout, "nhead": args.transformer_nhead,
"feedforward_dim": args.feedforward_dim_2, "num_enc_layers": num_enc_layers, "num_dec_layers": num_dec_layers,
"pos_type": args.pos_type}
# build transformers
self.transformer_1 = build_transformer(self.transformer_config_1)
self.transformer_2 = build_transformer(self.transformer_config_2)
# dimensionality reduction
self.dim_reduce_enc_cam = nn.Linear(self.transformer_config_1["model_dim"], self.transformer_config_2["model_dim"])
self.dim_reduce_enc_img = nn.Linear(self.transformer_config_1["model_dim"], self.transformer_config_2["model_dim"])
self.dim_reduce_dec = nn.Linear(self.transformer_config_1["model_dim"], self.transformer_config_2["model_dim"])
# token embeddings
self.cam_token_embed = nn.Embedding(1, self.transformer_config_1["model_dim"])
self.joint_token_embed = nn.Embedding(self.num_joints, self.transformer_config_1["model_dim"])
self.vertex_token_embed = nn.Embedding(self.num_vertices, self.transformer_config_1["model_dim"])
# positional encodings
self.position_encoding_1 = build_position_encoding(pos_type=self.transformer_config_1['pos_type'], hidden_dim=self.transformer_config_1['model_dim'])
self.position_encoding_2 = build_position_encoding(pos_type=self.transformer_config_2['pos_type'], hidden_dim=self.transformer_config_2['model_dim'])
# estimators
self.xyz_regressor = nn.Linear(self.transformer_config_2["model_dim"], 3)
self.cam_predictor = nn.Linear(self.transformer_config_2["model_dim"], 3)
# 1x1 Convolution
self.conv_1x1 = nn.Conv2d(args.conv_1x1_dim, self.transformer_config_1["model_dim"], kernel_size=1)
# attention mask
zeros_1 = torch.tensor(np.zeros((num_vertices, num_joints)).astype(bool))
zeros_2 = torch.tensor(np.zeros((num_joints, (num_joints + num_vertices))).astype(bool))
adjacency_indices = torch.load(osp.join(CUR_DIR, 'data/smpl_431_adjmat_indices.pt'))
adjacency_matrix_value = torch.load(osp.join(CUR_DIR, 'data/smpl_431_adjmat_values.pt'))
adjacency_matrix_size = torch.load(osp.join(CUR_DIR, 'data/smpl_431_adjmat_size.pt'))
adjacency_matrix = torch.sparse_coo_tensor(adjacency_indices, adjacency_matrix_value, size=adjacency_matrix_size).to_dense()
temp_mask_1 = (adjacency_matrix == 0)
temp_mask_2 = torch.cat([zeros_1, temp_mask_1], dim=1)
self.attention_mask = torch.cat([zeros_2, temp_mask_2], dim=0)
# learnable upsampling layer is used (from coarse mesh to intermediate mesh); for visually pleasing mesh result
### pre-computed upsampling matrix is used (from intermediate mesh to fine mesh); to reduce optimization difficulty
self.coarse2intermediate_upsample = nn.Linear(431, 1723)
# using extra token
self.pct = None
if pct is not None:
self.pct = pct
# +1 to align with uncertainty score
self.token_mixer = FCBlock(args.tokenizer_codebook_token_dim + 1, self.transformer_config_1["model_dim"])
self.start_embed = nn.Linear(512, args.enc_hidden_dim)
self.encoder = nn.ModuleList(
[MixerLayer(args.enc_hidden_dim, args.enc_hidden_inter_dim,
args.num_joints, args.token_inter_dim,
args.enc_dropout) for _ in range(args.enc_num_blocks)])
self.encoder_layer_norm = nn.LayerNorm(args.enc_hidden_dim)
self.token_mlp = nn.Linear(args.num_joints, args.token_num)
self.dim_reduce_enc_pct = nn.Linear(self.transformer_config_1["model_dim"], self.transformer_config_2["model_dim"])
def forward(self, images):
device = images.device
batch_size = images.size(0)
# preparation
cam_token = self.cam_token_embed.weight.unsqueeze(1).repeat(1, batch_size, 1) # 1 X batch_size X 512
jv_tokens = torch.cat([self.joint_token_embed.weight, self.vertex_token_embed.weight], dim=0).unsqueeze(1).repeat(1, batch_size, 1) # (num_joints + num_vertices) X batch_size X 512
attention_mask = self.attention_mask.to(device) # (num_joints + num_vertices) X (num_joints + num_vertices)
pct_token = None
if self.pct is not None:
pct_out = self.pct(images, None, train=False)
pct_pose = pct_out['part_token_feat'].clone()
encode_feat = self.start_embed(pct_pose) # 2, 17, 512
for num_layer in self.encoder:
encode_feat = num_layer(encode_feat)
encode_feat = self.encoder_layer_norm(encode_feat)
encode_feat = encode_feat.transpose(2, 1)
encode_feat = self.token_mlp(encode_feat).transpose(2, 1)
pct_token_out = encode_feat.permute(1,0,2)
pct_score = pct_out['encoding_scores']
pct_score = pct_score.permute(1,0,2)
pct_token = torch.cat([pct_token_out, pct_score], dim = -1)
pct_token = self.token_mixer(pct_token) # [b, 34, 512]
# extract image features through a CNN backbone
_img_features = self.backbone(images) # batch_size X 2048 X 7 X 7
_, _, h, w = _img_features.shape
img_features = self.conv_1x1(_img_features).flatten(2).permute(2, 0, 1) # 49 X batch_size X 512
# positional encodings
pos_enc_1 = self.position_encoding_1(batch_size, h, w, device).flatten(2).permute(2, 0, 1) # 49 X batch_size X 512
pos_enc_2 = self.position_encoding_2(batch_size, h, w, device).flatten(2).permute(2, 0, 1) # 49 X batch_size X 128
# first transformer encoder-decoder
cam_features_1, enc_img_features_1, jv_features_1, pct_features_1 = self.transformer_1(img_features, cam_token, jv_tokens, pos_enc_1, pct_token = pct_token, attention_mask=attention_mask)
# progressive dimensionality reduction
reduced_cam_features_1 = self.dim_reduce_enc_cam(cam_features_1) # 1 X batch_size X 128
reduced_enc_img_features_1 = self.dim_reduce_enc_img(enc_img_features_1) # 49 X batch_size X 128
reduced_jv_features_1 = self.dim_reduce_dec(jv_features_1) # (num_joints + num_vertices) X batch_size X 128
reduced_pct_features_1 = None
if pct_features_1 is not None:
reduced_pct_features_1 = self.dim_reduce_enc_pct(pct_features_1)
# second transformer encoder-decoder
cam_features_2, _, jv_features_2,_ = self.transformer_2(reduced_enc_img_features_1, reduced_cam_features_1, reduced_jv_features_1, pos_enc_2, pct_token = reduced_pct_features_1, attention_mask=attention_mask)
# estimators
pred_cam = self.cam_predictor(cam_features_2).view(batch_size, 3) # batch_size X 3
pred_3d_coordinates = self.xyz_regressor(jv_features_2.transpose(0, 1)) # batch_size X (num_joints + num_vertices) X 3
pred_3d_joints = pred_3d_coordinates[:,:self.num_joints,:] # batch_size X num_joints X 3
pred_3d_vertices_coarse = pred_3d_coordinates[:,self.num_joints:,:] # batch_size X num_vertices(coarse) X 3
# coarse-to-intermediate mesh upsampling
pred_3d_vertices_intermediate = self.coarse2intermediate_upsample(pred_3d_vertices_coarse.transpose(1,2)).transpose(1,2) # batch_size X num_vertices(intermediate) X 3
# intermediate-to-fine mesh upsampling
pred_3d_vertices_fine = self.mesh_sampler.upsample(pred_3d_vertices_intermediate, n1=1, n2=0) # batch_size X num_vertices(fine) X 3
out = {}
out['pred_cam'] = pred_cam
out['pct_pose'] = pct_out['pred_pose'] if self.pct is not None else torch.zeros((batch_size, 34, 2)).cuda(device)
out['pred_3d_joints'] = pred_3d_joints
out['pred_3d_vertices_coarse'] = pred_3d_vertices_coarse
out['pred_3d_vertices_intermediate'] = pred_3d_vertices_intermediate
out['pred_3d_vertices_fine'] = pred_3d_vertices_fine
return out
defaults_args = argparse.Namespace(
pos_type = 'sine',
transformer_dropout = 0.1,
transformer_nhead = 8,
conv_1x1_dim = 2048,
tokenizer_codebook_token_dim = 512,
model_dim_1 = 512,
feedforward_dim_1 = 2048,
model_dim_2 = 128,
feedforward_dim_2 = 512,
enc_hidden_dim = 512,
enc_hidden_inter_dim = 512,
token_inter_dim = 64,
enc_dropout = 0.0,
enc_num_blocks = 4,
num_joints = 34,
token_num = 34
)
default_pct_args = argparse.Namespace(
pct_backbone_channel = 1536,
tokenizer_guide_ratio=0.5,
cls_head_conv_channels=256,
cls_head_hidden_dim=64,
cls_head_num_blocks=4,
cls_head_hidden_inter_dim=256,
cls_head_token_inter_dim=64,
cls_head_dropout=0.0,
cls_head_conv_num_blocks=2,
cls_head_dilation=1,
# tokenzier
tokenizer_encoder_drop_rate=0.2,
tokenizer_encoder_num_blocks=4,
tokenizer_encoder_hidden_dim=512,
tokenizer_encoder_token_inter_dim=64,
tokenizer_encoder_hidden_inter_dim=512,
tokenizer_encoder_dropout=0.0,
tokenizer_decoder_num_blocks=1,
tokenizer_decoder_hidden_dim=32,
tokenizer_decoder_token_inter_dim=64,
tokenizer_decoder_hidden_inter_dim=64,
tokenizer_decoder_dropout=0.0,
tokenizer_codebook_token_num=34,
tokenizer_codebook_token_dim=512,
tokenizer_codebook_token_class_num=2048,
tokenizer_codebook_ema_decay=0.9,
)
backbone_config=dict(
embed_dim=192,
depths=[2, 2, 18, 2],
num_heads=[6, 12, 24, 48],
window_size=[16, 16, 16, 8],
pretrain_window_size=[12, 12, 12, 6],
ape=False,
drop_path_rate=0.5,
patch_norm=True,
use_checkpoint=True,
rpe_interpolation='geo',
use_shift=[True, True, False, False],
relative_coords_table_type='norm8_log_bylayer',
attn_type='cosine_mh',
rpe_output_type='sigmoid',
postnorm=True,
mlp_type='normal',
out_indices=(3,),
patch_embed_type='normal',
patch_merge_type='normal',
strid16=False,
frozen_stages=5,
)
def get_model(backbone_str = 'resnet50', device = torch.device('cpu'), checkpoint_file = None):
if backbone_str == 'hrnet-w48':
defaults_args.conv_1x1_dim = 384
# update hrnet config by yaml
hrnet_yaml = osp.join(CUR_DIR,'postometro_utils', 'pose_w48_256x192_adam_lr1e-3.yaml')
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_pose_hrnet(hrnet_config, None)
else:
backbone = get_pose_resnet(resnet_config, is_train=False)
mesh_upsampler = Mesh(device=device)
pct_swin_backbone = SwinV2TransformerRPE2FC(**backbone_config)
# initialize pct head
pct = PCT(default_pct_args, pct_swin_backbone, 'classifier', default_pct_args.pct_backbone_channel, (256, 256), 17, None, None).to(device)
model = PostoMETRO(defaults_args, backbone, mesh_upsampler, pct=pct).to(device)
print("[INFO] model loaded, params: {}, {}".format(backbone_str, device))
if checkpoint_file:
cpu_device = torch.device('cpu')
state_dict = torch.load(checkpoint_file, map_location=cpu_device)
model.load_state_dict(state_dict, strict=True)
del state_dict
print("[INFO] checkpoint loaded, params: {}, {}".format(backbone_str, device))
return model
if __name__ == '__main__':
test_model = get_model(device=torch.device('cuda'))
images = torch.randn(1,3,256,256).to(torch.device('cuda'))
test_out = test_model(images)
print("[TEST] resnet50, cuda : pass")
test_model = get_model()
images = torch.randn(1,3,256,256).to()
test_out = test_model(images)
print("[TEST] resnet50, cpu : pass")
test_model = get_model(backbone_str='hrnet-w48', device=torch.device('cuda'))
images = torch.randn(1,3,256,256).to(torch.device('cuda'))
test_out = test_model(images)
print("[TEST] hrnet-w48, cuda : pass")
test_model = get_model(backbone_str='hrnet-w48')
images = torch.randn(1,3,256,256).to()
test_out = test_model(images)
print("[TEST] hrnet-w48, cpu : pass")
|