Spaces:
Sleeping
Sleeping
# Load model directly | |
import os | |
from transformers import AutoModel, AutoTokenizer | |
from PIL import Image | |
import uuid | |
UPLOAD_FOLDER = "./uploads" | |
RESULTS_FOLDER = "./results" | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
if not os.path.exists(folder): | |
os.makedirs(folder) | |
class OCRModel: | |
tokenizer: AutoTokenizer | |
model: AutoModel | |
def __init__(self): | |
self.tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
self.model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cpu', use_safetensors=True, pad_token_id=self.tokenizer.eos_token_id) | |
self.model = self.model.eval() | |
def chat(self, image: Image.Image) -> str: | |
unique_id = str(uuid.uuid4()) | |
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") | |
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.txt") | |
image.save(image_path) | |
res = self.model.chat(self.tokenizer, image_path, ocr_type='ocr') | |
os.remove(image_path) # delete file create to avoid memory issue and data shared online | |
return res | |
ocr_model = OCRModel() | |