Spaces:
Running
Running
# Ethically sourced from https://github.com/xjdr-alt/entropix | |
from typing import Tuple | |
import torch | |
def precompute_freqs_cis( | |
dim: int, | |
end: int, | |
theta: float = 10000.0, | |
use_scaled: bool = False, | |
dtype: torch.dtype = torch.float32, | |
) -> torch.Tensor: | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=dtype)[: (dim // 2)] / dim)) | |
t = torch.arange(end, dtype=dtype).unsqueeze(1) | |
freqs = t * freqs.unsqueeze(0) | |
freqs = torch.exp(1j * freqs) | |
return torch.stack([freqs.real, freqs.imag], dim=-1) | |
def apply_rotary_emb( | |
x: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
position_ids: torch.Tensor, | |
interleave: bool = False, | |
) -> torch.Tensor: | |
rot_dim = freqs_cis.shape[-2] * 2 | |
x_rot, x_pass = x[..., :rot_dim], x[..., rot_dim:] | |
if interleave: | |
xq_r = x_rot.float().reshape(*x_rot.shape[:-1], -1, 2)[..., 0] | |
xq_i = x_rot.float().reshape(*x_rot.shape[:-1], -1, 2)[..., 1] | |
else: | |
d_q = x_rot.shape[-1] // 2 | |
xq_r, xq_i = x_rot[..., :d_q], x_rot[..., d_q:] | |
freqs_cos = freqs_cis[..., 0][position_ids, :].unsqueeze(0).unsqueeze(0) | |
freqs_sin = freqs_cis[..., 1][position_ids, :].unsqueeze(0).unsqueeze(0) | |
# Complex multiplication: (a + bi) * (c + di) = (ac - bd) + (ad + bc)i | |
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin | |
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos | |
xq_out = torch.stack((xq_out_r, xq_out_i), dim=-1).flatten(-2) | |
return torch.cat([xq_out.to(x.dtype), x_pass], dim=-1) | |